


contents

4 > 10

11>36

Everything there is to know about MachLine®

> MachLine: meeting every challenge for machine tool spindles 6 7 > Research & Development > The range 8-10

General technical details

12-14 > Preloading, definition of symbols > Rigidity, axial deflection 15 > Influence of an external axial load 16 > Speed correction factor 17 18-24 > Spindle design > Lubrication 25-27 > Selection guide 28-29 30-31 > Ceramic ball bearings (CH) > High speed bearings (ML) 32 > Sealed bearings (MLE) 33 > HNS bearings (N) 34 35-36 > Assembly examples

MachLine® range

37 > 60 > Symbols, labelling and packaging 38-39 40-51 > MachLine: the ranges > Precision self-locking nuts 52-54 55 > Summary of the ranges 56-60 > Tolerances and precision classes

Maintenance and services

62 > Storage > Assembly 63-66 > Vibratory analysis 67 > Expert analysis, training 68

61 > 68

Precision, speed, quality: the best of all worlds

SNR is part of the history of bearings... and is building their future

SNR is a major player on the European and worldwide stage, and has consistently remained committed to innovation in product design and manufacturing. Its process management operations compliment a sales presence in more than 200 countries.

However, SNR is also closely associated with the development of mechatronics. The company was in the vanguard of mechatronics pioneers, developing a specific competence working with customers in the three major markets of automotive, aerospace and industry.

Precision benefits from good organization

Very high precision bearings such as MachLine are designed, manufactured and tested by our aeronautics division which by its very nature, must have a "zero tolerance" organizational structure, when it comes to defects.

How have machine tool-specific requirements been accounted for in SNR's R&D? What product families make up the MachLine range? What are their general characteristics? Find the answers to these questions and more over the next few pages...

- every challenge for machine tool spindles
- Research & Development
- The range

MachLine®: meeting every challenge for machine tool spindles

Faster, cleaner, longer lasting: today's bearings need to be adapted to the reality of machining in today's world. High speed machining, reduction of downtime, greater rigidity and integrated sealing...

Machines are achieving ever increasing performance levels requiring productivity and environmental considerations to be considered.

The MachLine range has specific solutions for all these points.

The challenge of reliability

The MachLine range offers a selection of new innovative products so that you no longer have to choose between machining speed and load capacity. In addition, precision self-locking nuts are offered to ensure proper assembly. These products enhance the "standard" high precision ranges which are still available and displayed in this catalog:

- MachLine High Precision: Standard
- MachLine ML: High Speed
- MachLine CH: Hybrid
- MachLine MLE: Sealed bearings
- MachLine N: HNS
- Precision self-locking nuts

Enhanced performance with ceramic balls:

X3 times longer life

+30% faster

+10% more rigid

All MachLine range bearings are manufactured with a radial run-out whose precision meets ISO2 (ABEC 9) standards (Precision P4S).

The challenge of speed

Machining time is money. The quicker a machine works, the more productive it is. To achieve higher performance, bearings must be able to accommodate extremely high speeds – and this is why the ML range was designed.

The challenge of simplicity

A user's life is made easier if no periodic greasing is required: the MLE range of sealed bearings are lubricated for life.

SNR R&D: high performance for your machine tools

The research that SNR has put into the MachLine range covers all performance-related areas, from materials to bearing geometry and complementary functions.

- Steel:

Defects due to steel quality are extremely rare on MachLine bearings because SNR uses total procurement management and traceability systems for its products throughout the world. This guarantees high purity, the secret for long bearing life.

- Lubrication and sealing:

SNR has developed "life-long" lubrication solutions, including LubSolid, which is a solution specially designed for certain industrial applications. It has been one of SNR's major research areas for MachLine, in order to allow high speeds, improve sealing and thus protect the mechanical environment.

Medium-sized balls, providing a better balance between maximum speed and load capacity.

- Defect simulation:

In this area, SNR's test center is particularly effective and has many years of experience. MachLine has undergone a vast array of tests and undergone numerous simulations and in-depth vibratory analysis.

- Research into bearing instrumentation:

The future of machine tools is in microelectronics, magnetism and machine-based firmware and this is why SNR's R&D department is continuing to carry out research into upgrades for MachLine products in the area of mechatronics.

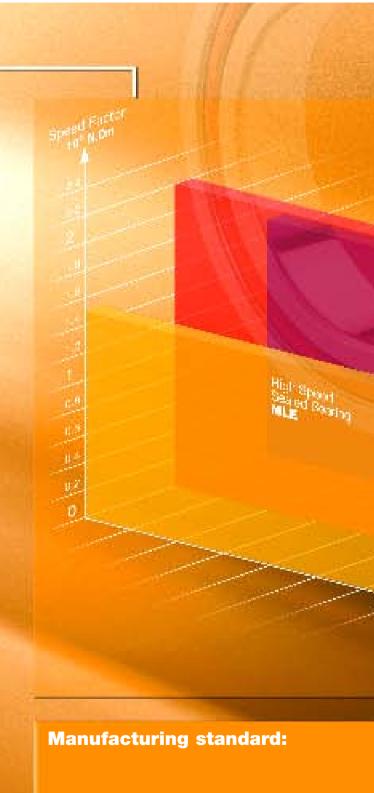
Contribution of fundamental and applied research:

As with all of SNR's ranges, MachLine has benefited from the company's active participation in European research programs, along with the largest worldwide steel manufacturers and major university research centers.

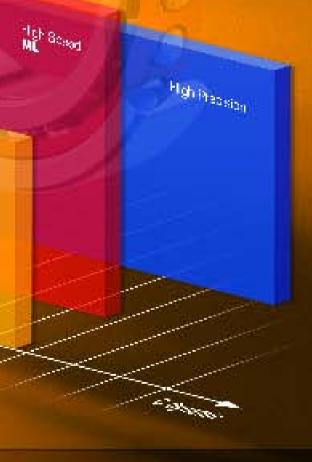
2.2 million N.Dm: extremely high speeds have been achieved with the ML range.

MachLine®: a vast array of solutions

HIGH PRECISION



- SNR series 71900V and 7000V, with excellent performance data to balance the need for speed, rigidity, capacity and precision.
- Series 7200G1, specially designed to meet specifications set by applications with large, predominantly axial loads.
- Variations according to contact angle (C for 15° and H for 25°) and preload (light, medium or heavy).



HYBRID, CERAMIC BALLS **CH**

- Possible variation for all ranges, all series and all dimensions with Silicon Nitride balls and steel rings, combining the best qualities of the two materials.
- Reduced operating temperature and increased top speed. Reduced lubrication requirements as compared to a "conventional steel" bearing.
- Increased rigidity and longer life.

Manufacturing precision 4S as standard (ISO 2, ABEC 9, for all rotation dynamic characteristics and ISO 4, ABEC 7, for all others).

HIGH SPEED ML •

Speed

- Family made up of series 71900 and 7000, designed and developed by SNR to meet the increasingly stringent requirements in high speed mechanization.
- Specially designed geometry: reduction in ball diameter, increase in number of balls and optimization of cage guidance on outer ring.
- Different variations according to contact angle (C for 17° and H for 25°) and preload.

HIGH SPEED SEALED BEARING MLE

- When oil lubrication is not required and grease lubrication is sufficient, SNR has a technically appropriate solution which is also economically attractive - the MLE family of bearings, series 71900 and 7000.
- With nitrile rubber seals on the outer ring, not in contact with the inner ring, the same top speed can be attained as with an open bearing lubricated with grease.
- · Variations according to contact angle (C for 17° and H for 25°) and preload.

MachLine®: a vast array of solutions

HNS bearings: N

This bearing is a direct result of SNR's aeronautical know-how and its performance data for machine tools are remarkable:

- Increased rotation speeds,
- Better fatigue resistance,
- More reliable even when poorly lubricated,
- Longer life,
- Corrosion resistant.

Characteristics:

Bearings made of stainless martensitic steel with nitrogen (material used in aeronautics).

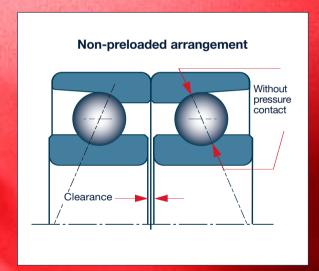
- Rings made of XD15N.
- Ceramic balls.

Precision self-locking nuts

Available in narrow or wide gauge, with a choice of 2 or 4 locking inserts, using blind holes or slots, the SNR range of precision self-locking nuts covers all requirements on the market.

These products are vital:

- for all precision bearing assemblies,
- when a set of bearings need a guaranteed preload, which can be maintained over time,
- for high axial loads.



Preload: a direct effect on the application

Preload and preloading

Preload is an important characteristic for any assembly as it is used to achieve a defined, managed rigidity. It also has a direct influence on the load capacity and allowable rotational speed.

Preloading an assembly consists of applying a permanent axial load by abutting the faces of the bearings in the assembly. This load will lead to an elastic deformation between balls and raceway and will create a contact pressure between the components.

Preloaded arrangement

Pr

O

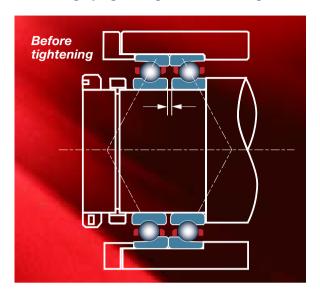
Penetration of ball into race

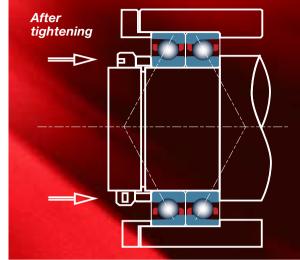
Example: assembly 7014HVDBJ84

Clearance: 0,012 mm

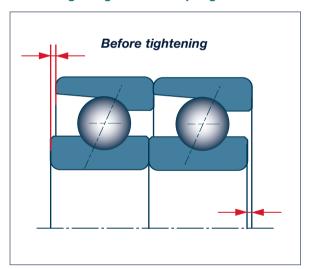
Preload: Pr = 1100 N (247 lbf)

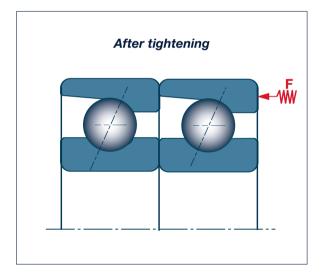
Deflection: 0,0025 mm


Contact pressure:


inner ring: 960 N/mm² (139,400 psi)
 outer ring: 840 N/mm² (121,800 psi)

The axial load is known as preload (Pr).


Two methods for application


Preloading by tightening faces of bearings in an assembly

Preloading using calibrated springs

Definition of symbols

- Pr Preload
- a Distance between the 2 spacers (µm)
- K Deflection constant (μm (daN)-2/3)
- Pr_i Initial preload (daN)
- Pr_s Preload required (daN)
- PE Equilibrium preload for an assembly
- CD Separation load
- Fa Axial load
- Fr Radial load

- P Equivalent dynamic load
- C Basic dynamic load
- P₀ Equivalent static load
- C₀ Basic static load
- N Rotation speed (rpm)
- L₁₀ Nominal service life (hr)
- f_s Safety factor
- L_{na} Corrected service life (hr)
- N.Dm Speed factor

Preload: parameters to take into account

Preload levels

SNR has defined 3 preload levels which correspond to a level of contact pressure suitable for operating conditions:

Light preload (code 7):
 High-speed, light load applications.

- Medium preload (code 8):
Best balance between speed and load.

- Heavy preload (code 9):
Large load, reduced speed applications.

 SNR can supply specific preloads on request (code X) to meet spindle operation optimization requirements. Should a specific preload be required, it can be achieved using bearings preloaded as standard assembled with different length spacers.

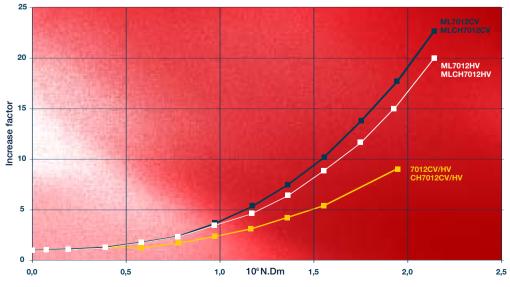
The following formula is used to calculate the space required between two spacers to alter the bearing assembly preload:

$$a = 2K(Pr_i^{2/3} - Pr_s^{2/3})$$

a: difference in length between the 2 spacers (µm) K: deflection constant (see page 44)

Pr_i: initial preload (daN)

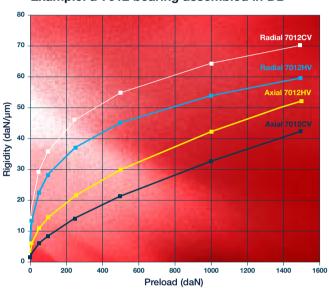
Pr_s: preload required (daN)


See also page 15, axial deflection of an angular contact ball bearing.

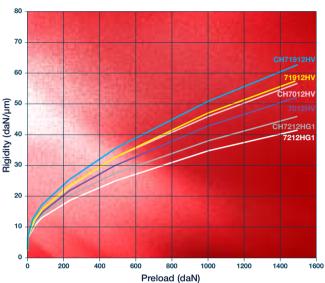
Factors influencing preload

The following factors can influence the preload value:

- assembly interference (fits),
- rotation speed,
- **temperature**, possibly associated with shaft and housing materials,
- geometry of the surrounding parts.

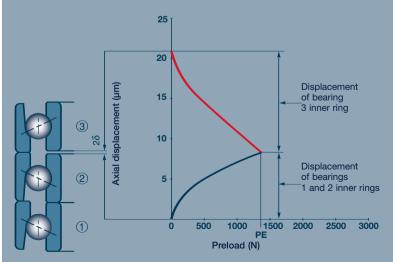

Make sure these parameters are fully taken into account when a spindle is designed. Contact SNR's design office for any further information. They are always prepared to share their expertise in this area.

Preload increase factor according to rotation speed: comparison between 7012 and ML7012 bearings, versions with steel or ceramic balls.


Rigidity as a function of preload

Example: a 7012 bearing assembled in DB

The rigidity is given by the preload. As preload increases, rigidity also increases in a non-linear manner.


Comparison of rigidity by series

Axial deflection of an angular contact ball bearing

When a bearing is subject to an axial load **Fa in daN**, one of the rings undergoes axial displacement with respect to the other, with a value δa : $\delta a = K(Fa)^{2/3}$

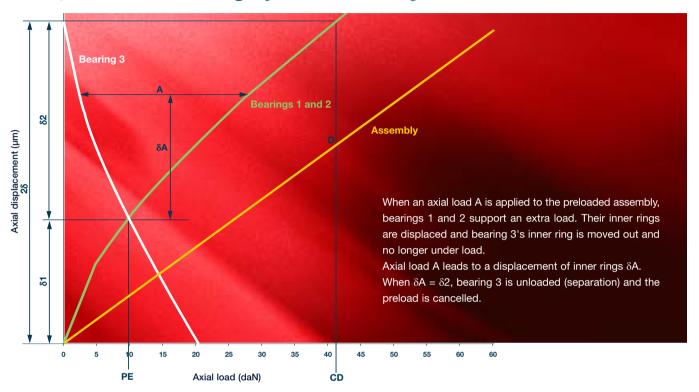
K is the axial deflection constant for each bearing and its value is given in the preload table (see page 44).

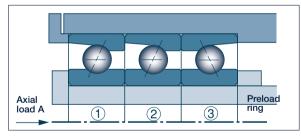
Preload application:

For instance, let us take an assembly, Q16, with preload **Pr** on its bearings. There is a gap of **28** between the inner rings of bearings 2 and 3 prior to preloading.

$$2\delta = 2K(Pr)^{2/3}$$

If the inner rings are abutted such as to close the gap 2δ , the displacement is shown in the diagram opposite. The equilibrium preload for the assembly equals **PE** when clearance 2δ is eliminated.





Influence of an external axial load

Axial deflection graph for assembly Q16

Characteristics

- Axial displacement: until preload is cancelled, this is equal to δ2. With the initial approximation, it is defined by the line OD. Beyond point D, the curve represents the bearings supporting axial load A: in the above examples, bearings 1 and 2.
- Axial rigidity: until the preload is cancelled, mean rigidity is equal to CD/δ2.
- Detachment load CD: this is the axial load that leads to the separation of the bearing(s) in opposition: in the above example, bearing 3.

Characteristic values for equilibrium preload PE and detachment load CD

Assembly	PE	CD
DB - DF	Pr	2.83 Pr
Q16	1.36 Pr	5.66 Pr
Q21	2 Pr	5.66 Pr

Pr: preload

Our engineers can send you the characteristic curves for any assembly on request. The axial and radial rigidity values for preloaded bearings are given on page 44.

Speed correction factors

Each bearing can only rotate up to a certain speed known as its limit speed. A bearing's limit speed depends on its design, lubrication method and the thermal level tolerated at this speed. If any of these parameters are altered, the limit speed is altered.

According to assembly

When bearings are put together in an assembly, the limit speed of the single bearing must be adjusted according to the assembly and the preload.

The limit speed for a single bearing is defined on page 41.
For MachLine hybrid bearings, this value should be increased by 30 % (see page 31).

According to preload

Preload is selected from three suggested levels: *light, medium and heavy*. The level should be selected according to the spindle's maximum speed, the desired rigidity and the detachment load.

| Speed correction*

After the above selections have been made, it is important to ensure that they can reach the required maximum spindle speed.

For other types of assembly, please contact SNR.

Assembly	Preload			
	Light	Medium	Heavy	
DT	0.90	0.80	0.65	
DB	0.80	0.70	0.55	
DF	0.75	0.65	0.40	
Q16	0.70	0.60	0.35	
Q21	0.65	0.55	0.30	

Any non-compliance with the requisite geometric tolerances detracts from the assembly's maximum speed and thus from correct spindle operation.

^{*} This factor is given for information to help in design. If a spindle is to be used continuously close to its limit speed, the thermal level reached should be checked to ensure that it is compatible with the required precision.

| Bearing pre-design

This must be checked and optimized either by using the simplified and/or corrected calculation method with the bearing service life method, or by using an application-specific software design package.

| Required service life

The bearing service life on a spindle is linked to the loss of machining precision (dimensional precision, vibrations) or to abnormal heating.

This loss of precision is due to deterioration of raceway surfaces and balls due to wear, contamination, oxidation or lubricant deterioration (oil or grease). The corresponding service life cannot be directly calculated. The only possible calculation is for service life L_{10} linked to material fatigue. Experience has shown that to give suitable spindle dimensions, service life L_{10} should be of the order of 20,000 hours.

Simplified calculation method

This most simple method, recommended by the **ISO 281 standard** is used to calculate the nominal service life reached by 90 % of bearings working under a dynamic load.

The simplified calculation method shown opposite is based on material fatigue as cause of failure.

| Equivalent dynamic load

The torque and drive loads must be distributed over each bearing by using the normal methods of mechanical engineering.

 Axial load: This is to be distributed uniformly over each bearing supporting this load. If "m" bearings support this load:

$$Fa = A/m$$

A = axial load applied to main bearing.

- Calculating the equivalent dynamic load:

$$P = X Fr + Y Fa$$

Coefficients **X** and **Y** are described in the table opposite. To define them, calculate the ratio **Fa/Co** and read the value for **e** and calculate **Fa/Fr** and compare it to **e**.

Co is the basic static radial load.

If the load varies between different machining types, the weighted equivalent radial load calculated is as follows:

$$P = (t_1P_1^3 + t_2P_2^3 + + t_iP_i^3)^{1/3}$$

t: = usage rate

P_i = corresponding equivalent load

 Radial load: This is to be distributed uniformly to each bearing making up the main bearing. If there are «n» bearings making up the main bearing, the radial load applied to each bearing will be:

 $Fr = R / n^{0.9}$

R: radial load applied to main bearing

	Fa/Co	е	Fa/	′Fr ≤ e	Fa/F	r > e
			X	Y	X	Y
	0.015	0.38	1	0	0.44	1.47
	0.029	0.40	1	0	0.44	1.40
	0.058	0.43	1	0	0.44	1.30
	0.087	0.46	1	0	0.44	1.23
15°	0.12	0.47	1	0	0.44	1.19
	0.17	0.50	1	0	0.44	1.12
	0.29	0.55	1	0	0.44	1.02
	0.44	0.56	1	0	0.44	1.00
	0.58	0.56	1	0	0.44	1.00
25°	-	0.68	1	0	0.41	0.87

| Nominal service life

Life in hours: $L_{10} = (C/P)^3 \cdot 10^6/60N$

C: dynamic basic load (see page 41)
Co: basic static radial load (see page 41)
N: rotation speed of the rotating ring in rpm

The life of the bearings on the spindle is calculated to be the service life of the bearing supporting the greatest load.

Spindle design: simplified and corrected calculation method

Equivalent static load

Should a bearing be subject to combined static loads, the equivalent static load needs to be calculated to compare it with the bearing's static load capacity.

- Calculating the equivalent static load:

Po = Xo Fr + Yo Fa

Coefficients **Xo** and **Yo** are given in the table opposite. To define them, the ratio **Fa/Fr.**

A bearing's static load capacity is given as a reference value rather than an accurate limit that should not be exceeded. It is useful to take it into account, for instance, in assessing the influence of punctual loads such as those generated by tool release or bar advance systems.

 Basic static capacity for a bearing Co: This is defined in ISO 76 standard as the radial load that generates a Hertz pressure of 4,200 MPa at the most highly loaded point of contact (rotating body and raceway).

	Fa/Fr	Хо	Yo
15°	≤1.09	1	0
10 -	>1.09	0.50	0.46
25°	≤1.31	1	0
25	>1.31	0.50	0.38

Safety factor: f_s = i Co / Po

i: Number of bearings

Co: Basic static load of bearing

Po: Equivalent static load

In principle, the minimum values for the safety factor f_s:

- 2.5 to 3 for spindles in general
- 1 to 1.5 for a short-term axial load.

Corrected calculation method

The ISO 281 standard gives a corrected nominal service life formula L_{na} which is expressed as a function of the basic nominal service life L_{10} : $L_{na} = a_1.a_2.a_3.L_{10}$

- Coefficient a₁

Coefficient used to correct a calculation for a reliability value other than 90 %. This factor is given in the table below:

Life	Reliability	Probability of failure	a ₁
L ₁₀	90%	10	1.00
L ₅	95%	5	0.62
L ₄	96%	4	0.53
L ₃	97%	3	0.44
L ₂	98%	2	0.33
L ₁	99%	1	0.21

- Coefficient a₂

Coefficient for correcting calculation according to material and internal geometry.

For certain applications, a bearing may be manufactured from a special steel other than conventional steel, or have a non-standard internal geometry. These selections can give a much greater service life than that of a standard bearing.

In this case, a coefficient a_2 which is greater than 1 is applied. This coefficient is calculated according

to experimental results obtained in SNR's research and testing centers.

Material	a ₂
100Cr6	1
XD15N	2.8

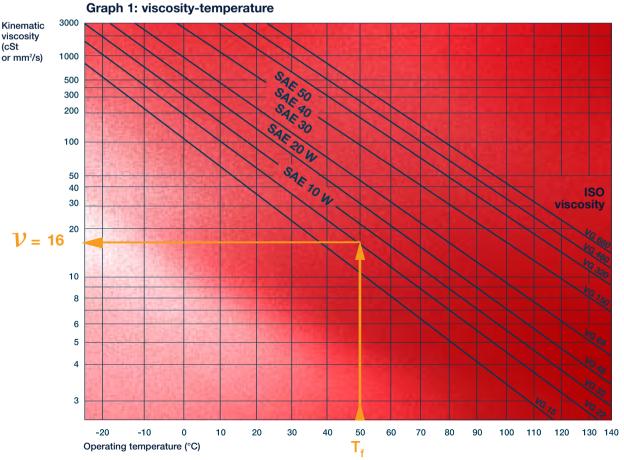
- Coefficient a₃

Coefficient for correcting calculations according to operating conditions: contamination, lubrication, temperature... Please note that coefficients a_2 and a_3 are not independent.

- Coefficient a_{3pol}

Contamination can reduce service life, depending on its type and the level at which the rotating parts are loaded.

In most cases, a spindle bearing operates in maximum cleanliness conditions, and coefficient

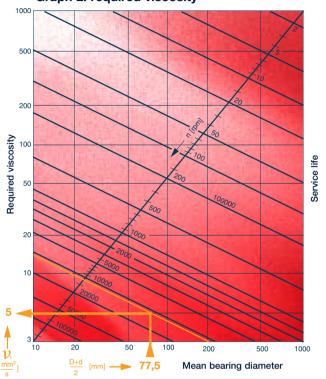

a_{3pol} will thus equal 1. For other types of applications which are

less well protected, coefficient **a**_{3pol} can have the following values:

Filtration	a _{3pol}
< 3 µm	1
5 µm	0.95
10 µm	0.90

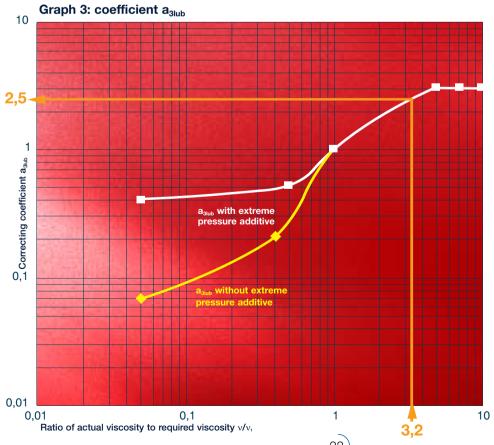
- Coefficient a_{3lub}

Bearing service life is influenced by the efficiency of lubrication, which, amongst other things, is characterized by the oil film thickness. Elastohydrodynamic theory shows that this latter value depends almost entirely on oil viscosity and speed. The graphs below can be used to determine coefficient a_{3lub}.



Spindle design: corrected calculation method

Graph 2: required viscosity


Example

Bearing 7012CV at 13,000 rpm lubricated with VG22 oil and operating at 122°F.

Graph 1: VG22 oil viscosity at 122°F is v = 16 cSt

Graph 2: required viscosity for a 7012CV with mean diameter Dm = 77.5 mm at 13,000 rpm is: $v_1 = 5$ cSt

Graph 3: coefficient a_{3lub} with viscosity ratio $v/v_1 = 16/5 = 3.2$ is $a_{3lub} = 2.5$

- Coefficient a_{3temp}

The operating temperature for bearing components is given in the table below:

Compone	nt Max. temp.	Comment
Rings	302°F	-
Balls - steel - ceramic	302°F > 392°F	- -
Cage - phenolic resin	212°F continuous 248°F peak temperature	Standard
- bronze	392°F	On request
- PEEK	248°F continuous 302°F peak temperature	On request
Seals	212°F continuous 248°F peak temperature	- -
Grease	248°F	-

For most machine tool spindle applications, coefficient $a_{3\text{temp}} = 1$ is used, as the operating temperature is well below 212°F .

For other, more exposed applications, coefficient a_{3temp} can have the following values:

Temperature	$a_{3\text{temp}}$
< 212°F	1
230°F	0.96
248°F	0.92
266°F	0.88
284°F	0.84
302°F	0.8

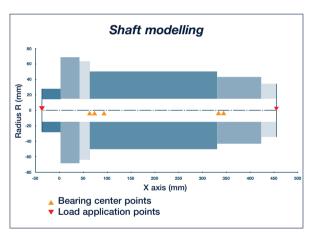
Infinite service life

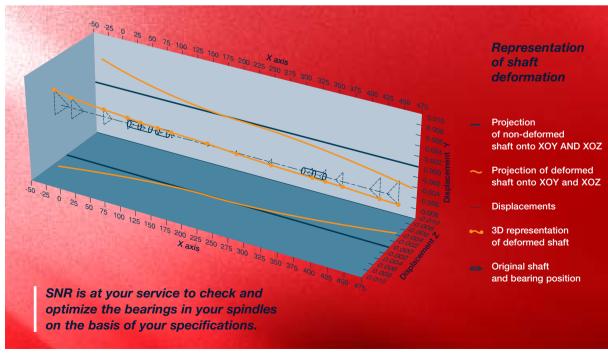
In the area of materials development, we can define conditions under which bearings can have an infinite service life:

- Metal surfaces fully separated by a film of oil, giving $a_{3lub} > 1.5$.
- Extremely limited oil film contamination, giving $a_{3\text{pol}} = 1. \label{eq:a3pol}$
- Load applied corresponds to Co/Po > 9, corresponding to Hertz pressure values lower than:
 2,000 MPa for 100Cr6, 2,300 MPa for XD15N.

Design software

SNR's R&D department has developed design software for use in optimizing and checking spindle bearing dimensions. This software gives a fuller and more accurate simulation than the simplified or corrected methods. It provides a means to model the spindle and its bearings and to properly take load, rotation speed and lubrication into account. The software simulates the equilibrium state of a spindle rotating on bearings and subject to external loads.


• It determines:


- loads and the deflection at the contact between balls and rings,
- loads applied to each bearing,
- displacement of inner and outer rings,
- shaft deformation,
- axial and radial rigidity at the selected reference point.

• It calculates:

- the pressure values and dimensions of the elliptical contact surfaces,
- the service life L₁₀ of the bearings, based on the contact capacity,
- the thickness of the lubricant film (the service life is adjusted in the event of insufficient film thickness).

Graphic display of input data and SNR results

Appropriate lubrication: the secret for long bearing life

Lubrication is an essential component of correct bearing function. It is used to avoid wear and seizure by placing an oil film between the rotating parts and the raceway. It also cools the bearing, by removing dissipated heat from the contacts and provides long-term corrosion protection for the bearing.

Selection of lubrication method

This is determined according to the maximum rotation speed and the loads, which determine the quantity of heat to be removed. It is thus inextricably linked to machine design.

 Grease lubrication is recommended when the maximum required speed allows and when the heat produced can be removed by conduction via the environment without leading to overheating (ΔT generally permitted 68°F to 77°F).

Oil lubrication (using oil mist or oil-air) is recommended in other situations.

Oil lubrication

When the rotation speed exceeds the limit speed for grease lubrication, oil lubrication must be chosen. SNR recommends that a low-viscosity oil is selected in order to minimize heating effects - viscosity of the order of 20 cSt at 104°F (unless loads applied are very high).

 Oil mist lubrication: lubrication occurs by means of a gentle flow of oil sprayed into an air duct.
 Circulation of filtered dry air is used for cooling. For instance, for a 7016 bearing, the oil flow would be 50 mm³/hr per bearing, and the air pressure 0.7 to 2 bar. Excess pressure generated in the spindle improves sealing.

 Oil-air lubrication: oil droplets are periodically introduced into an air duct. This system is cleaner and provides a good replacement for the oil mist system. Lubricant quantity can be better managed in this way.

Settings for 7016 bearing (example):

- Oil flow: 60 mm³/hr for each bearing
- Injection frequency: 8 min.
- Air pressure: 1.0 to 2.5 bars.
- Note: settings are given for information and must be optimized to achieve the lowest possible thermal level.
- Circulation channels: the lubricant must be directed as close as possible to the bearing and introduced between the inner ring and the cage.

The oil inlet pitch diameter (D5) and the space between inner ring and cage (E) are defined on page 40.

Appropriate lubrication: the secret for long bearing life

Grease **lubrication**

SNR recommends its own SNR-LUB GV+ grease. It provides good resistance to high speeds and loads and enables a low operating torque value.

SNR-LUB GV+:

- Base: synthetic oil, lithium soap.
- Additives: antioxidant, antiwear, anti-corrosion, extreme pressure.
- Low viscosity: : 15 cSt at 104°F
- Operating temperature: between -58°F and +248°F.

LUB GV+ grease is particularly recommended for applications with vertical shafts.

The volume of grease recommended by SNR is defined in the table opposite. Alter this volume according to the operating speed on the basis of the correcting coefficients below.

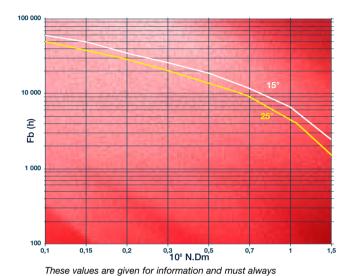
% limit speed	Correcting coefficient
< 35 %	1
35 % to 75 %	0.75
> 75 %	0.60

MachLine high speed range - ML

Mean volume of grease per bearing in cm³ - tolerance ± 10%

Bore code	Series 70	Series 719
00	0.1	0.1
01	0.2	0.1
02	0.3	0.1
03	0.3	0.1
04	0.6	0.3
05	0.8	0.4
06	1.0	0.5
07	1.4	0.6
08	1.7	1.0
09	2.2	1.1
10	2.4	1.1
11	4.4	2.3
12	4.6	2.6
13	5.2	2.7
14	6.7	4.3
15	7.1	4.6
16	9.3	4.8
17	9.6	6.5
18	12.9	6.8
19	12.8	7.0
20	13.5	9.6
21	18.3	-
22	22.1	10.3
24	23.5	13.3
26	34.8	17.5

Example: 7016 bearing to be used at 7,000 rpm (64 % of its limit speed with grease). Grease volume to be used: $10 \text{ cm}^3 x \ 0.75 = 7.5 \text{ cm}^3$ N.Dm = product of mean bearing


diameter (mm) multiplied by rotation speed (rpm). Grease application: see page 64.

MachLine high precision range

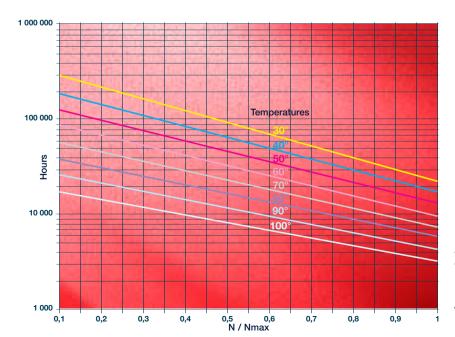
	olume of gre cm³ - tolerar		aring
Bore code	Series 70	Series 72	Series 719
00	0.3	0.4	0.2
01	0.4	0.5	0.2
02	0.5	0.6	0.3
03	0.6	0.8	0.3
04	1.0	1.3	0.5
05	1.2	1.7	0.6
06	1.6	2.3	0.7
07	2.0	3.3	1.0
80	2.5	3.5	1.5
09	3.2	5.3	1.6
10	3.4	6.2	1.7
11	4.7	7.5	2.2
12	5.0	9.2	2.3
13	5.3	11	2.5
14	7.5	13	4.2
15	7.8	14	4.3
16	10	16	4.5
17	11	21	6.3
18	14	26	6.5
19	15	-	7.3
20	16	38	9.7
21	19	-	10
22	24	52	10
24	25	63	14
26	40	-	19
28	42	-	20
30	51	-	30
32	64	-	31
34	83	-	32
36	107	-	50
38	110	-	52
40	140	-	74
44	190	-	80
48	-	-	86

Regreasing

- Basic regreasing frequency: the graph below can be used to determine the basic frequency in hours according to bearing type.

Correcting regreasing frequency: the basic frequency Fb must be corrected by coefficients given in the table below, according to particular spindle operating conditions, using the equation:

Fc = Fb.Te.Ta.Tt


Coef.	Conditions	Level	Coef. value
Те	Environment		
	- dust	Low	1
	- damp	Medium	8.0
	- condensation	High	0.5
Та	Application		
	 vertical shaft 	Low	1
	 vibrations 	Medium	8.0
	- impacts	High	0.5
Tt	Temperatures	< 167°F	1
		167° to 1	85°F 0.8
		185° to 248°F 0.5	

Grease life

be confirmed by testing.

Often spindle bearings are assembled such that the Hertz pressure values enable almost infinite resistance to fatigue. For this type of application, the grease life becomes an important factor in defining bearing service life.

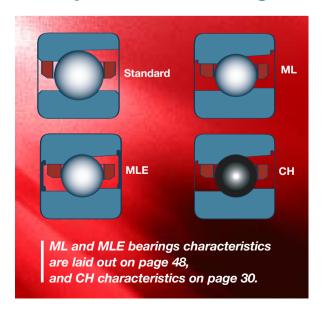
Grease life is the period during which the grease will maintain its initial characteristics and lubricating power. For any given grease, it is mainly a function of the bearing rotation speed and its operating temperature.

N: bearing rotation speed Nmax: bearing rotation limit speed T: operating temperature (°C)

These values are given for information and must always be confirmed by testing.

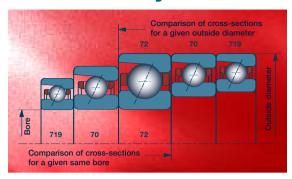
MachLine® selection guide

Our MachLine range has been designed for spindle applications for most machine tools: lathes, milling and drilling machines, center bores, grinders, high speed spindles, etc. Their capacity to support operating constraints - cutting and drive forces - and their high rotation speeds have been optimized for the following criteria: rotational accuracy, dimensional stability, geometrical micro and micro variations, rigidity, heat, vibration and service life.


Features of angular contact bearings

- Very high quality 100Cr6 steel rings and balls,
- Two contact angles: 15° and 25° (17° and 25° for MachLine ML and MLE range),
- Laminated resin cage centered on outer ring (Bronze or PEEK cage on request),
- Three preload grades (specific preloading on request),
- Standard precision P4S: ISO4 (ABEC 7) for dimensional characteristics and ISO2 (ABEC 9) for all dynamic characteristics. It is also possible to supply products with ISO 2 precision.

With our manufacturing know-how we can align the preloaded outer ring and inner ring with very high precision, guaranteeing offset of less than 2µm.


This non-standardized characteristic determines the preload value, which has a significant influence on spindle rigidity and behavior.

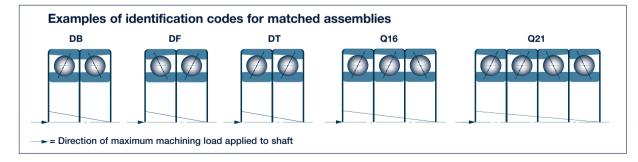
| Comparison of internal geometry

- MachLine High Speed ML: Speeds 30 % faster than the standard range are achieved using an increased number of balls with reduced diameter and improved cage guidance on the outer ring.
- MachLine Sealed MLE: Performance values at speeds comparable to a standard bearing lubricated with oil are achieved with grease lubrication by using non-contact seals on ML range bearings.
- MachLine Hybrid CH: Bearing performance can be further enhanced by using ceramic balls instead of steel balls.

Dimensions by series

Bearing series and version codes

Series	Version code
7000	V
71900	V
7200	G1


- V version: Series 71900 and 7000 are the best suited to high rotation speeds. They provide the best combination of speed, capacity, rigidity and precision characteristics.
- G1 version: The G1 version was specially designed to meet series 7200 specifications, which is designed to withstand predominantly major axial loads.

Version selection: SNR offers several options for creating a bearing arrangement.

Features of versions on offer

- UNIVERSAL bearing, code U: with the selected preload, the inner ring and outer ring surfaces of these bearings are on the same plane. All types of arrangements can be achieved with this bearing.
- Arrangements of UNIVERSAL bearings, codes DU, TU, QU...: Arrangement of several universal bearings whose outside diameters and bores are selected to ensure a tolerance range no more than half the ISO tolerance level.
- Arrangements of MATCHED bearings, codes DB, DF, DT, Q16, Q21...: These assemblies are matched by SNR and must not be re-arranged. They have the following characteristics:
- Matching preload values,
- Variation of outside diameter and bore values within a tolerance range no more than half the ISO standard tolerance,
- Assembly is identified with a "V" marked on the outside diameter of all bearings in an assembly.

These features, in particular the extremely precise preload values, mean that greater spindle precision can be achieved, with better rigidity and longer life.

Specific tolerances

Certain specific applications may require bearings with lower bore and outside diameter tolerances, values centered with respect to ISO 4 tolerance specifications. These bearings are identified with the letter R, as shown in the following coding example: 71912CVURJ74.

MachLine® CH - Hybrid: selecting a ceramic ball

The internal design of SNR series can greatly increase bearing performance and life with ceramic balls.

| Ceramic properties

The ceramic used is a Silicone Nitride: Si₃N₄

- low density: 0.1156 lbs/in³,
- low coefficient of thermal expansion,
- high modulus of elasticity: 45 x 10° psi,
- non-magnetic,

- low coefficient to friction,
- electrical insulator,
- low heat conductivity,
- corrosion-resistant.

| Significant results

These physical properties make it possible to:

- increase rotation speed at a given operating temperature,
- improve bearing rigidity,
- increase bearing life.

All MachLine High Precision ranges, ML, MLE and 7000, 71900 and 7200 series are available as a hybrid version.

Performance values for MachLine CH - Hybrid

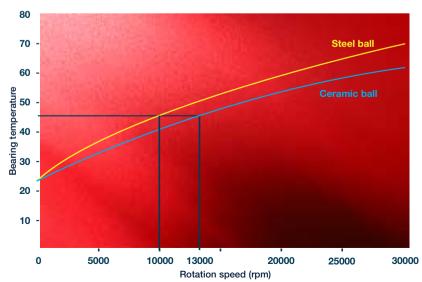
Increase in rotation speed: + 30%

The kinematics of SNR hybrid bearings generates less slipping and heating than steel ball bearings. At a given temperature, they can operate at approximately 30 % higher speeds than steel ball bearings.

Improved rigidity: + 10%

The fact that the modulus of elasticity of ceramics is higher than that of steel means that the rigidity of a hybrid bearing can be increased by approximately 10 % under a given preload.

In certain situations, the properties of "hybrid" bearings may allow grease lubrication where air-oil lubrication would otherwise be required due to the required rotation speed. This option provides economic advantages.



The lubrication and friction behavior of ceramics, in particular, their low friction coefficient and capacity to operate in reduced lubrication conditions, means that bearing raceways resist wear and damage much longer than with steel balls. The actual service life depends on operating conditions, but has been observed to be on the order of 2 or 3 times greater than steel ball bearings (under comparable operating conditions).

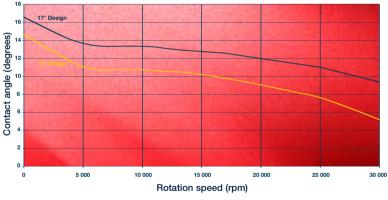
Lubricants used for 100Cr6 steel bearings can generally be used with ceramic ball bearings. Some applications may require a specific study to define the recommended lubricant.

Example for a CH7009CVDTJ04, spring preloaded to 550 N

Temperature as a function of rotation speed:
At a temperature of 113°F, the rotation speed goes from 10,000 rpm with steel balls to 13,000 rpm with ceramic balls.

MachLine® ML - High Speed: our solution for very high speeds

SNR has developed a range specifically designed to meet increasingly stringent requirements in applications using very high speed spindles.


I Optimized design

The ML range is made up of series 7000 and 71900. The internal geometry of these bearings has been optimized to guarantee optimum behavior and operation at limit speeds:

- Angle of contact 17° and 25°.
- Precision 4S.
- Phenolic resin cage with improved guidance.
- Design optimized for oil lubrication.

Residual theoretical average contact angle

The graph opposite shows changes in the contact angle of a ML7011CVUJ74S according to rotation speed.
The advantage of a 17° design is that it maintains a larger contact angle at top speeds than a 15° design.

A « V » is marked on the outside diameter, in direction of the contact angle, to facilitate installation and creation of bearing arrangements.

Performance: reducing operating deformations

- Increase rotation speed, while maintaining a load capacity compatible with the service life target for high speed spindles.
- Speed coefficient on the order of 2.2x106 N.Dm.

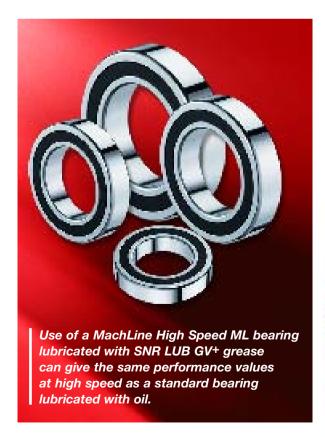
These performance values have been made possible by using smaller balls and more of them. This design has the major advantage of increasing the ring cross-section, reducing operation deformations.

MachLine® MLE - Sealed: by definition, a cost-saving solution

Reduce maintenance costs

SNR has specially developed MLE bearings for machine tool spindles, a part of the trend for simplified mechanisms.

Conventional lubrication systems (oil mist, air-oil) are no longer required with this type of bearing. These methods are expensive, difficult to maintain


and can cause critical functional failures for spindle use. For grease-lubricated applications, the MLE **bearing means no more complex**, expensive sealing systems and regreasing operations.

Design and features

The design of these bearings is based on ML bearings, available in series 7000 and 71900:

- Contact angle 17° and 25°.
- Precision 4S.
- Non-contact seals: avoids over-heating linked to friction on seals.
- Reduced clearance between seal lip and the shoulder of the inner ring: limiting contaminant entry and avoiding grease leaks.
- Greased in factory by SNR, using optimum quantities of SNR-LUB GV+, recommended by our research and test center.
- Greased in clean room: avoiding contamination during assembly.

A single « V » is marked on the outside diameter to facilitate assembly and creating bearing arrangements.

SNR offers MachLine HNS for applications where the bearing is operating at extreme speed or load conditions. It was developed for the aviation and aerospace industries.

| General features

This bearing has **stainless steel rings and ceramic** balls.

XD15N steel is a nitrogen-strengthened martensitic

stainless steel, developed by SNR in partnership with Aubert & Duval. It is **highly corrosion-resistant** and resistant to wear and surface damage.

Performance of XD15N steel...

Its conventional manufacturing methods using ESR (Electro Slag Remelted) - and its highly machinable property make this a very high performance steel,

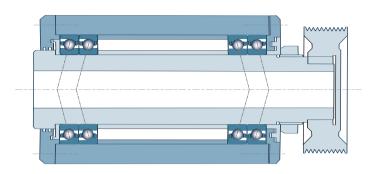
with **excellent cleanliness**, guaranteeing greater fatigue resistance than conventional steel.

... and ceramic balls

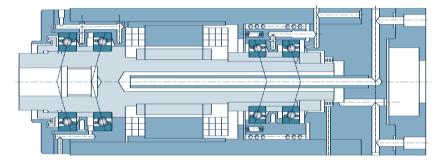
This bearing uses ceramic balls to give all the lubricant and wear advantages of ceramic-steel contact – high resistance to wear and deterioration (see page 31).

The SNR research and test center has established coefficient a_2 in calculating the corrected service life for XD15N – a value of 2.8 (see page 20).

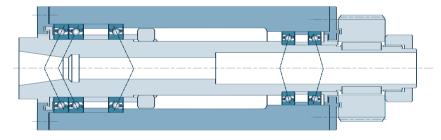
Classification of spindle applications into broad areas


This classification gives the most usual configurations, but others are possible.

Number of bearings	Bearing	Arrangement	Field of application							
	Front		Light to medium loads – high speeds Installed on boring, milling, drilling units and grinding spindles.							
4	Rear									
	Front		Light loads – very high speeds Often installed on internal grinding spindles, spring preloaded.							
	Rear									
5	Front		Heavy loads (single direction axial loads) - medium speeds Very often installed on boring and milling machines,							
	Rear		lathes and boring, milling and drilling units.							
	Front		Heavy loads – medium speeds Useful when installed on assemblies where the axial load applies in both directions.							
6	Rear		For spindles on boring and milling machines, lathes and boring, milling and drilling units.							



Spindle types and assembly examples

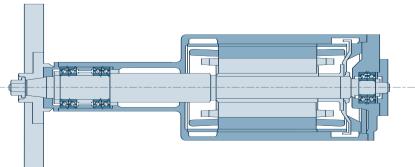

Example 1: MachLine Standard bearings

Q21 arrangement

Example 2: MachLine ML bearings

Front bearing: DT arrangement Rear bearing: DT arrangement spring preloaded

Example 3:


MachLine MLE bearings

Front bearing: Q16 arrangement Rear bearing: DB arrangement


Example 4: MachLine MLE bearings

Front bearing: DB arrangement Rear bearing: DB arrangement

Example 5: MachLine Standard bearings

Front bearing: Q21 arrangement Rear bearing: DB arrangement

MachLine®

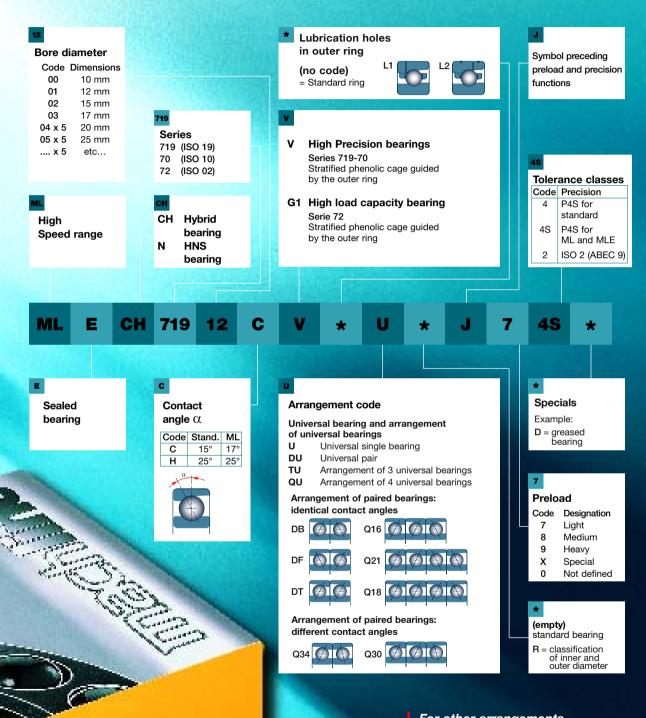
range

To help in your choices, the section gives all part numbers, characteristics and tolerances for our range of bearings and precision self-locking nuts.

You are also provided with a whole range of operational information to facilitate your logistics and make easier to understand our symbol, marking and packaging code systems.

Symbols, labelling	
and packaging	38-39
MachLine: the ranges	40-51
• Precision	
self-locking nuts	52-54
• Summary of the ranges	55
• Tolerances and	

precision classes

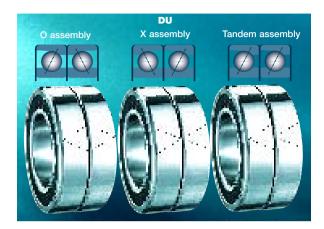


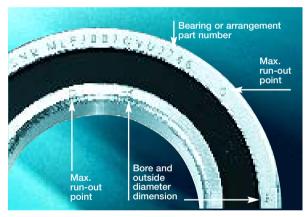
56-60

Symbol system for MachLine® bearings

For other arrangements, consult SNR

Ma ENR


Marking


- Universal bearings: A single « V » is marked on the outside diameter to facilitate assembly. This identification is currently used for ML and MLE bearings and will be gradually incorporated into all ranges in 2006.
- Matched bearing arrangements: The « V » marked on the outside diameter shows the position of the bearings in the arrangement, enabling the assem-

bly to be centered at installation (see installation recommendations). The registration number of the arrangement enables assemblies to

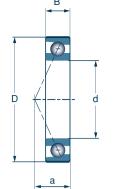
be put back together if bearings get mixed up. The « V » of the arrangement is at 90° angle to the single « V » on the outside diameter.

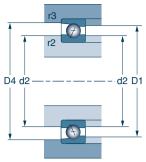
| Packaging

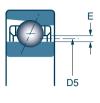
After being coated with an anti-oxidant, MachLine bearings are individually packed in a heat-sealed plastic bag. If the bearing is kept in its original packaging, long-term oxidation protection is guaranteed.

- Universal bearings. Information shown on package: bearing part number, packaging date, bore and outside diameter dimensions.
- Matched bearing arrangements: for bearing arrangements, boxes containing the bearings are bound with adhesive tape stating "Do not separate".
 Information shown on package: arrangement part number, packaging date, bore and outside diameter dimensions.

All SNR MachLine bearings have been given a holographic label with several security features as part of our ongoing fight against counterfeiting.





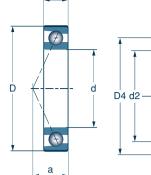

| Series 719 / 70 / 72

D	imensio	ns	Weight	Series		Should	ers and fille	ets (mm)		Hole lubric		Ball	s
d	D	В	lbs		D1	d2	D4	Max. r2	Max. r3	D5	Е	Diam.	Nb
10	22	6	0.022	71900	17.8	13.6	18.8	0.3	0.1	14.7	1.10	3.175	11
	26	8	0.040	7000	21.4	14.7	22.7	0.3	0.1	16.5	1.85	4.762	10
	30	9	0.066	7200	24.5	16.0	25.5	0.6	0.3	18.2	2.25	5.556	10
12	24	6	0.024	71901	19.6	15.4	20.6	0.3	0.1	16.5	1.30	3.175	13
	28	8	0.044	7001	23.4	16.7	24.7	0.3	0.1	18.5	1.65	4.762	11
	32	10	0.082	7201	26.0	18.3	27.9	0.6	0.3	20.5	1.85	5.953	10
15	28	7	0.033	71902	24.3	18.7	25.4	0.3	0.1	20.0	1.40	3.969	13
	32	9	0.062	7002	26.9	20.2	28.2	0.3	0.1	22.0	1.65	4.762	13
	35	11	0.097	7202	29.0	21.1	31.3	0.6	0.3	23.3	2.10	5.953	11
17	30	7	0.037	71903	26.6	21.0	27.7	0.3	0.1	23.0	1.45	3.969	14
	35	10	0.082	7003	29.4	22.7	30.7	0.3	0.1	24.4	1.75	4.762	14
	40	12	0.143	7203	33.0	24.1	35.2	0.6	0.3	26.5	2.45	6.747	11
20	37	9	0.079	71904	31.9	25.1	33.2	0.3	0.15	26.8	1.78	4.762	15
	42	12	0.139	7004	35.5	26.6	37.3	0.6	0.3	29.0	2.40	6.350	13
	47	14	0.232	7204	38.6	28.5	41.4	1.0	0.3	31.3	2.80	7.938	11
25	42	9	0.090	71905	37.4	30.6	38.7	0.3	0.15	32.3	1.75	4.762	17
	47	12	0.168	7005	40.1	32.2	42.3	0.6	0.3	34.2	2.05	6.350	15
	52	15	0.282	7205	44.5	34.0	46.9	1.0	0.3	36.8	2.80	7.938	13
30	47	9	0.104	71906	41.9	35.1	43.2	0.3	0.15	36.8	1.73	4.762	18
	55	13	0.247	7006	47.0	38.1	49.5	1.0	0.3	40.4	2.35	7.144	16
	62	16	0.441	7206	52.1	40.4	55.4	1.0	0.3	43.5	3.15	9.525	13
35	55	10	0.165	71907	48.6	41.4	50.4	0.6	0.15	43.2	1.85	5.556	18
	62	14	0.331	7007	53.1	43.2	56.3	1.0	0.3	46.0	2.85	7.938	16
	72	17	0.639	7207	61.0	47.4	64.5	1.1	0.3	50.9	3.50	11.112	13
40	62	12	0.243	71908	55.2	46.8	57.2	0.6	0.15	49.0	2.18	6.350	19
	68	15	0.408	7008	59.0	49.2	61.8	1.0	0.3	51.8	2.55	7.938	18
	80	18	0.816	7208	67.6	52.8	71.8	1.1	0.6	56.9	4.05	11.906	13
45	68	12	0.282	71909	60.7	52.3	62.7	0.6	0.3	54.5	2.15	6.350	20
	75	16	0.525	7009	65.0	54.7	68.6	1.0	0.3	57.5	2.85	8.731	18
	85	19	0.917	7209	72.5	57.4	77.5	1.1	0.6	61.7	4.30	12.700	14
50	72	12	0.284	71910	65.2	56.8	67.2	0.6	0.3	58.9	2.13	6.350	21
	80	16	0.564	7010	70.0	59.7	73.6	1.0	0.3	62.5	2.80	8.731	19
	90	20	1.072	7210	76.9	62.5	82.7	1.1	0.6	66.7	4.20	12.700	15
55	80	13	0.399	71911	72.5	62.1	75.8	1.0	0.3	65.4	2.25	7.144	21
	90	18	0.860	7011	80.0	65.0	84.0	1.1	0.6	69.0	2.00	9.525	19
	100	21	1.367	7211	87.0	68.0	92.5	1.5	0.6	72.5	2.10	14.288	14
60	85	13	0.430	71912	77.5	67.1	80.8	1.0	0.3	70.4	2.25	7.144	23
	95	18	0.926	7012	85.0	70.0	89.0	1.1	0.6	73.8	2.00	9.525	21
	110	22	1.786	7212	95.0	75.0	101.5	1.5	0.6	79.5	2.30	15.875	14
65	90	13	0.463	71913	82.5	72.5	86.0	1.0	0.3	74.5	1.25	7.144	27
	100	18	0.970	7013	90.0	75.0	94.0	1.1	0.6	78.8	2.00	9.525	22
	120	23	2.514	7213	104.0	81.0	109.0	1.5	0.6	87.0	2.30	15.875	15
70	100	16	0.750	71914	91.0	79.0	95.0	1.0	0.3	81.5	1.50	8.731	24
	110	20	1.345	7014	98.5	81.5	103.0	1.1	0.6	85.8	2.50	11.112	21
	125	24	2.426	7214	109.0	86.0	116.0	1.5	0.6	91.4	2.60	17.462	14

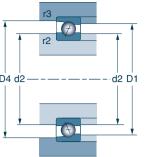
Series 719 CV 70 CV / 72 CG1

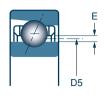
Series 719 HV 70 HV / 72 HG1

Series C	а	Basic loa in			speed pm	Series H	а	Basic loa in l			speed rpm
Oches O	(mm)	C Dynamic	Co Static	Grease	Oil		(mm)	C Dynamic	Co Static	Grease	Oil
71900CV 7000CV	5 6	686 1,283	342 619	71,000 60,000	108,000 95,000	71900HV 7000HV	7 8	653 1,238	326 596	67,000 53,000	103,000 82,000
7200CG1	7	1,688	833	53,000	82,000	7200HG1	9	1,620	799	46,000	72,000
71901CV 7001CV	5 7	765 1,395	419 720	64,000 54,000	97,000 85,000	71901HV 7001HV	7 9	731 1,350	398 686	61,000 48,000	93,000 72,000
7201CG1	8	1,935	968	48,000	74,000	7201HG1	10	1,868	945	42,000	65,000
71902CV	6	1,148	641	52,000	79,000	71902HV	9	1,091	619	49,000	75,000
7002CV	8	1,575	900	46,000	72,000	7002HV	10	1,508	866	42,000	62,000
7202CG1	9	2,115	1,125	42,000	65,000	7202HG1	11	2,048	1,091	37,000	57,000
71903CV 7003CV	7 8	1,193	709 1,001	46,000 41,000	70,000 65,000	71903HV 7003HV	9 11	1,148	675 956	44,000 37,000	68,000
7203CG1	10	1,665 2,610	1,440	37,000	58,000	7203HG1	13	1,575 2,520	1,395	32,000	56,000 50,000
71904CV	8	1,733	1,103	39,000	60,000	71904HV	11	1,643	1,046	37,000	57,000
7004CV	10	2,655	1,598	35,000	55,000	7004HV	13	2,543	1,530	31,000	47,000
7204CG1	11	3,510	2,003	32,000	49,000	7204HG1	15	3,375	1,913	28,000	43,000
71905CV	9	1,868	1,305	33,000	50,000	71905HV	12	1,755	1,238	31,000	47,000
7005CV 7205CG1	11 13	2,925 3,960	1,935 2,498	30,000 27,000	47,000 42,000	7005HV 7205HG1	14 16	2,790 3,803	1,845 2,385	26,000 24,000	40,000 37,000
71906CV	10	1,890	1,418	29,000	44,000	7203HG1 71906HV	13	1,800	1,328	27,000	42,000
7006CV	12	3,758	2,633	25,000	40,000	7006HV	16	3,578	2,520	22,000	34,000
7206CG1	14	5,490	3,578	23,000	35,000	7206HG1	19	5,265	3,420	20,000	31,000
71907CV	11	2,498	1,913	25,000	38,000	71907HV	15	2,363	1,823	23,000	36,000
7007CV	13	4,725	3,488	23,000	35,000	7007HV	18	4,500	3,330	21,000	31,000
7207CG1	16	7,313	4,883	20,000	31,000	7207HG1	21	6,975	4,658	17,000	27,000
71908CV 7008CV	13 15	3,308 4,860	2,655 3,780	21,000 21,000	33,000 33,000	71908HV 7008HV	18 20	3,128 4,613	2,498 3,600	20,000 20,000	31,000 30,000
7208CG1	17	8,213	5,625	18,500	29,500	7208HG1	23	7,875	5,423	16,500	25,500
71909CV	14	3,465	2,408	20,000	30,000	71909HV	19	3,263	2,273	18,000	26,000
7009CV	16	6,165	4,320	19,000	28,000	7009HV	22	5,850	4,073	18,000	24,000
7209CG1	18	10,328	6,728	16,500	26,000	7209HG1	25	9,855	6,413	15,000	22,500
71910CV 7010CV	14 17	3,510 6,345	2,543 4,545	19,000 18,000	28,000 26,000	71910HV 7010HV	20 23	3,308 5,985	2,385 4,343	16,000 14,500	24,000 22,000
7010CV 7210CG1	19	10,800	7,335	15,500	24,500	7010HV 7210HG1	26	10,283	6,930	13,500	20,500
71911CV	16	4,208	3,083	16,500	25,000	71911HV	22	3,960	2,903	13,500	21,500
7011CV	19	6,863	5,850	16,000	24,000	7011HV	26	6,525	5,603	14,000	22,000
7211CG1	21	11,925	9,000	14,500	21,500	7211HG1	29	11,475	8,550	12,500	19,500
71912CV	16	4,388	3,375	14,500	23,500	71912HV	23	4,140	3,195	13,500	20,000
7012CV 7212CG1	19 22	7,313 14,625	6,638 11,025	15,000 12,500	23,000 19,500	7012HV 7212HG1	27 31	6,863 13,950	6,300 10,575	14,000 11,000	21,000 17,500
71913CV	17	4,883	4,928	14,500	22,000	721211G1 71913HV	25	4,590	4,590	14,000	21,000
7013CV	20	7,425	6,975	14,000	21,000	7013HV	28	7,088	6,638	13,000	19,000
7213CG1	24	15,075	12,150	11,500	17,500	7213HG1	33	14,400	11,700	10,000	16,500
71914CV	19	6,638	6,525	13,000	20,000	71914HV	28	6,300	6,188	12,500	19,000
7014CV	22	9,675	9,000	13,000	20,000	7014HV	31	9,113	8,438	12,500	19,000
7214CG1	25	17,325	13,500	11,000	16,500	7214HG1	35	16,425	12,825	9,700	15,000



MachLine®: ranges High Precision - Standard


| Series 719 / 70 / 72


D	imensior	ıs	Weight	Series		Shoulders	and fillets	s (mm)			e for cation	Balls	i
d	D	В	lbs		D1	d2	D4	Max. r2	Max. r3	D5	Е	Diam.	Nb
75	105	16	0.794	71915	96.0	84.0	100.0	1.0	0.3	86.3	1.50	8.731	26
	115	20	1.433	7015	103.5	86.5	108.0	1.1	0.6	90.7	2.50	11.112	22
	130	25	2.646	7215	114.0	91.0	121.0	1.5	0.6	96.4	2.60	17.462	15
80	110	16	0.838	71916	101.0	89.0	105.0	1.0	0.3	91.2	1.50	8.731	27
	125	22	1.874	7016	112.0	93.0	117.5	1.1	0.6	98.0	3.50	13.494	20
	140	26	3.241	7216	122.5	97.5	130.0	2.0	1.0	103.4	2.80	19.050	15
85	120	18	1.213	71917	110.0	95.0	114.0	1.1	0.6	98.6	1.80	9.525	27
	130	22	1.985	7017	117.0	98.0	122.5	1.1	0.6	102.8	3.50	13.494	21
	150	28	3.991	7217	131.0	104.0	140.0	2.0	1.0	110.3	3.10	20.638	15
90	125	18	1.279	71918	115.0	100.0	119.0	1.1	0.6	103.5	1.80	9.525	29
	140	24	2.558	7018	125.5	104.5	131.5	1.5	0.6	110.0	3.80	15.081	20
	160	30	4.939	7218	139.0	111.0	149.0	2.0	1.0	117.2	3.30	22.225	15
95	130	18	1.301	71919	120.0	105.0	124.0	1.1	0.6	108.3	2.00	10.319	28
	145	24	2.668	7019	130.5	109.5	136.5	1.5	0.6	114.8	3.80	15.081	21
100	140	20	1.808	71920	128.5	111.5	133.5	1.1	0.6	115.6	2.10	11.112	28
	150	24	2.800	7020	135.5	114.5	141.5	1.5	0.6	119.7	3.80	15.081	22
	180	34	7.122	7220	155.5	124.5	167.0	2.1	1.1	131.0	3.80	25.400	14
105	145	20	1.896	71921	133.5	116.5	138.5	1.1	0.6	120.5	2.10	11.112	29
	160	26	3.550	7021	144.5	120.5	150.0	2.0	1.0	127.0	4.00	15.875	22
110	150	20	1.962	71922	138.5	121.5	143.5	1.1	0.6	125.5	2.10	11.112	30
	170	28	4.410	7022	153.0	127.0	160.0	2.0	1.0	134.0	4.50	17.462	21
	200	38	9.989	7222	172.5	137.5	185.5	2.1	1.1	145.0	4.30	28.575	14
120	165	22	2.624	71924	151.5	133.5	157.5	1.1	0.6	137.7	3.30	13.494	28
	180	28	4.741	7024	163.0	137.0	170.0	2.0	1.0	144.0	4.50	17.462	23
	215	40	12.348	7224	185.5	149.5	197.5	2.1	1.1	157.5	4.30	28.575	16
130	180	24	3.462	71926	165.0	145.0	172.0	1.5	0.6	149.8	3.70	15.081	27
	200	33	7.012	7026	179.5	150.5	189.0	2.0	1.0	158.0	5.30	20.638	21
140	190	24	3.704	71928	175.0	155.0	182.0	1.5	0.6	159.8	3.70	15.081	29
	210	33	7.541	7028	189.5	160.5	199.0	2.0	1.0	168.0	5.30	20.638	23
150	210	28	5.777	71930	192.5	167.5	199.0	2.0	1.0	174.0	4.10	16.669	29
	225	35	9.173	7030	203.0	172.0	213.0	2.1	1.0	180.0	5.70	22.225	23
160	220	28	6.086	71932	202.5	177.5	209.0	2.0	1.0	184.0	4.10	16.669	30
	240	38	11.312	7032	216.0	184.0	227.0	2.1	1.0	192.0	6.20	23.812	23
170	230	28	6.417	71934	212.5	187.5	219.0	2.0	1.0	194.0	4.10	16.669	32
	260	42	15.391	7034	232.5	197.5	246.0	2.1	1.1	206.4	6.60	25.400	23
180	250	33	9.393	71936	229.0	201.0	237.5	2.0	1.0	208.3	4.70	19.050	30
	280	46	19.845	7036	249.5	210.5	264.0	2.1	1.1	219.8	7.80	30.163	21
190	260	33	9.878	71938	239.0	211.0	247.5	2.0	1.0	218.3	4.70	19.050	32
	290	46	20.727	7038	259.5	220.5	274.0	2.1	1.1	229.8	7.80	30.163	22
200	280	38	13.583	71940	255.5	224.5	266.0	2.1	1.0	232.0	5.50	23.812	27
	310	51	26.791	7040	276.5	233.5	292.0	2.1	1.1	243.6	8.60	33.338	21
220	300	38	14.928	71944	275.5	244.5	286.0	2.1	1.0	252.0	5.50	22.225	31
	340	56	35.897	7044	304.0	256.0	321.0	3.0	1.1	268.6	8.60	33.338	23
240	320	38	16.030	71948	295.5	264.5	306.0	2.1	1.0	272.0	5.50	22.225	33

В

Series 719 CV 70 CV / 72 CG1

Series 719 HV 70 HV / 72 HG1

Series C	а	Basic loa in			speed pm		а	Basic loa in			speed pm	
	(mm)	C Dynamic	Co Static	Grease	Oil			(mm)	C Dynamic	Co Static	Grease	Oil
71915CV 7015CV	20 23	6,863 9,900	7,088 9,450	12,500 12,000	19,000 19,000		71915HV 7015HV	29 32	6,525 9,338	6,638 9,000	12,000 11,000	18,000 17,000
7215CG1	26	18,000	14,625	10,000	16,000		7215HG1	36	17,100	13,950	9,100	14,500
71916CV 7016CV	21 25	6,975 13,275	7,425 12,375	12,000 11,000	18,000 17,000		71916HV 7016HV	30 35	6,638 12,600	6,863 11,925	11,000 10,500	17,000 16,000
7216CG1	28	21,150	17,550	9,400	15,000		7216HG1	39	20,025	16,650	8,500	13,000
71917CV 7017CV	23 25	8,213 13,725	8,775 13,275	11,000 10,500	17,000 16,000		71917HV 7017HV	33 36	7,763 13,050	8,213 12,600	9,900 9,900	15,000 15,000
7217CG1	30	24,300	20,475	8,700	14,000		7217HG1	41	23,175	19,350	7,800	12,000
71918CV 7018CV	23 27	8,550 16,425	9,338 15,525	10,500 10,000	16,000 15,000		71918HV 7018HV	34 39	7,988 15,525	8,775 14,850	9,900 9,200	15,000 14,000
7218CG1	32	27,900	23,625	8,100	12,500		7218HG1	44	26,550	22,500	7,300	11,000
71919CV 7019CV	24 28	9,675 16,650	10,688 16,425	9,900 9,700	15,000 14,500		71919HV 7019HV	35 40	9,113 15,975	9,900 15,525	9,200 8,900	14,000 13,500
71920CV	26	11,025	12,375	9,500	14,500		71920HV	38	10,350	11,475	8,600	13,000
7020CV 7220CG1	29 36	17,100 33,750	17,325 28,575	9,300 7,200	14,000 11,000		7020HV 7220HG1	41 50	16,200 32,175	16,425 27,225	8,600 6,400	13,000 9,800
71921CV	27	11,250	12,825	9,200	14,000		71921HV	39	10,575	11,925	8,600	13,000
7021CV 71922CV	31 27	18,900 11,475	19,350 13,275	8,800 8,900	13,500 13,500		7021HV 71922HV	44	17,775 10,688	18,225 12,375	7,900 8,200	12,000 12,500
7022CV	33	21,825	22,050	8,300	12,500		7022HV	47	20,700	20,925	7,600	11,500
7222CG1 71924CV	40 30	39,825 15,750	36,000 18,225	6,300 8,200	9,700 12,500		7222HG1 71924HV	55 44	38,025 14,850	34,425 17,100	5,600 7,500	8,700 11,500
7024CV	34	22,950	24,525	7,700	11,500		7024HV	49	21,600	23,175	6,900	10,500
7224CG1 71926CV	42 33	43,425 18,900	42,075 22,050	5,700 7,500	8,700 11,500		7224HG1 71926HV	59 48	41,400 17,775	40,050 20,700	5,100 6,900	7,800 10,500
7026CV	39	29,475	30,825	7,000	10,500		7026HV	55	27,900	29,250	6,500	9,800
71928CV 7028CV	34 40	19,575 31,050	23,625 34,200	7,200 6,600	11,000 10,000		71928HV 7028HV	50 57	18,450 29,250	22,050 32,400	6,400 6,100	9,800 9,200
71930CV	38	23,625	28,800	6,500	9,000		71930HV	56	22,275	27,000	5,900	9,000
7030CV 71932CV	43 39	35,550 23,850	39,600 29,700	6,200 6,200	9,300 9,400		7030HV 71932HV	61 58	33,525 22,500	37,575 27,675	5,700 5,600	8,600 8,500
7032CV	46	40,275	45,450	5,800	8,800		7032HV	66	38,025	42,975	5,300	8,100
71934CV 7034CV	41 50	24,075 45,000	31,500 51,750	5,800 5,400	8,900 8,100		71934HV 7034HV	61 71	23,175 42,525	29,475 49,050	5,300 5,000	8,100 7,500
71936CV	45	30,375	38,925	5,400	8,300		71936HV	67	28,575	36,225	4,900	7,500
7036CV 71938CV	54 47	54,900 31,275	65,250 41,175	5,000 5,200	7,600 7,900		7036HV 71938HV	77 69	51,975 29,475	61,875 38,475	4,600 4,700	7,000 7,200
7038CV	55	56,250	68,625	4,800	7,300		7038HV	79	53,325	65,250	4,400	6,700
71940CV 7040CV	51 60	43,200 63,000	54,675 79,875	4,800 4,500	7,400 6,900		71940HV 7040HV	75 85	40,725 59,625	51,525 75,375	4,400 4,200	6,800 6,300
71944CV	54	40,500	54,450	4,400	6,800		71944HV	77	38,250	50,850	4,000	6,200
7044CV	66	66,375	88,875	4,100	6,200		7044HV	93	63,000	84,375	3,700	5,700
71948CV	57	41,625	57,375	4,200	6,400		71948HV	84	39,150	53,550	3,800	5,800

MachLine®: ranges **High Precision - Standard**

Preload, axial and radial rigidity of DU DB DF arrangements

Symbol	Deflection constant		Preload (lb	f)		Axial rigidit (lbf/µm)	у	١	Radial rigidit (lbf/µm)	ty
	K (1)	7	8	9	7	8	9	7	8	9
71900CV 7000CV 7200CG1 71900HV 7000HV	2.58 2.33 2.12 1.25 1.14 1.03	3 6 9 5	9 18 27 16 29 41	17 36 52 32 59	3 4 5 7 9	5 7 9 11 15	7 10 12 15 20	16 23 29 15 20	23 32 40 21 28	28 38 48 26 34
7200HG1 71901CV 7001CV 7201CG1 71901HV 7001HV 7201HG1	2.31 2.19 2.11 1.12 1.06 1.03	14 3 7 9 6 11	10 20 29 17 32 47	81 19 41 56 34 63 95	3 5 5 8 11	5 7 9 13 16	25 8 11 12 17 21 25	25 20 25 30 18 23 27	35 27 36 42 25 31 38	44 33 43 51 30 38 47
71902CV	2.18	5	16	32	4	7	9	24	34	41
7002CV	2.06	7	23	45	5	9	12	28	39	48
7202CG1	1.98	10	29	61	6	9	13	34	46	56
71902HV	1.05	8	25	50	10	15	20	21	30	37
7002HV	1.00	12	36	72	12	18	25	25	35	43
7202HG1	0.97	17	50	99	14	21	28	30	41	51
71903CV 7003CV 7203CG1 71903HV 7003HV 7203HG1	2.08 1.87 1.81 1.00 0.91	6 8 14 9 14 20	17 24 38 27 38 63	34 47 79 54 77 126	5 5 7 11 13 16	7 9 11 16 20 24	10 13 16 22 26 32	26 32 37 23 29 32	36 44 50 32 39 45	45 54 62 40 49 55
71904CV	1.79	8	25	50	6	10	14	33	47	58
7004CV	1.65	14	41	81	7	13	19	42	58	70
7204CG1	1.58	19	59	113	9	15	21	46	64	77
71904HV	0.87	12	38	77	14	21	28	29	42	52
7004HV	0.81	23	68	135	18	27	37	37	52	64
7204HG1	0.80	32	92	185	20	31	43	41	56	69
71905CV	1.64	9	27	54	7	11	15	38	53	65
7005CV	1.50	16	45	90	9	15	21	48	66	81
7205CG1	1.45	23	68	135	10	17	25	55	77	93
71905HV	0.80	14	41	81	16	24	31	33	47	58
7005HV	0.74	25	72	144	20	30	41	43	59	73
7205HG1	0.72	34	101	203	23	36	49	47	66	81
71906CV	1.59	9	27	54	7	11	16	40	55	68
7006CV	1.43	19	56	113	10	16	24	55	77	94
7206CG1	1.33	29	86	171	11	18	26	64	88	106
71906HV	0.77	14	43	86	16	25	33	34	50	61
7006HV	0.70	29	90	180	22	34	46	48	68	83
7206HG1	0.68	45	135	270	26	40	54	56	78	95
71907CV	1.45	12	37	74	8	14	19	47	66	81
7007CV	1.30	23	68	135	11	19	27	64	90	109
7207CG1	1.32	41	119	225	14	23	32	75	104	124
71907HV	0.70	20	59	117	20	30	40	43	59	73
7007HV	0.63	38	113	225	27	41	55	58	81	100
7207HG1	0.65	63	189	383	32	49	67	66	93	115

⁽¹⁾ Axial deflection constant in μ m (lbf)^{-2/3} 7 = light preload 8 = medium preload 9 = heavy preload

Symbol	Deflection constant		Preload (lbf	1)	,	Axial rigidit (lbf/µm)	У	F	Radial rigid (lbf/µm)	ity
	K (1)	7	8	9	7	8	9	7	8	9
71908CV	1.29	17	52	104	10	17	25	59	82	100
7008CV	1.25	25	74	149	12	20	29	69	96	117
7208CG1	1.37	42	126	248	13	22	31	75	105	127
71908HV	0.63	27	81	162	25	38	51	52	73	90
7008HV	0.61	41	119	248	28	43	60	61	86	107
7208HG1	0.67	68	203	405	32	48	65	67	95	117
71909CV	1.20	18	52	104	11	18	25	61	85	105
7009CV	1.24	29	90	180	14	24	34	75	113	141
7209CG1	1.33	52	158	315	16	27	38	89	128	160
71909HV	0.59	27	81	162	26	39	52	54	76	95
7009HV	0.61	47	146	293	32	50	68	66	97	123
7209HG1	0.63	83	248	495	38	58	78	79	113	142
71910CV	1.13	18	52	104	11	18	26	63	87	108
7010CV	1.15	32	95	189	14	25	36	80	118	150
7210CG1	1.29	54	162	324	17	28	40	94	134	167
71910HV	0.55	27	83	167	27	41	54	56	79	99
7010HV	0.56	50	151	299	33	52	70	68	101	127
7210HG1	0.61	86	257	513	40	61	82	83	119	149
71911CV	1.08	20	63	126	12	20	27	83	111	138
7011CV	1.12	41	108	234	16	25	37	90	121	151
7211CG1	1.20	72	180	360	18	27	39	101	133	163
71911HV	0.53	34	99	198	29	43	58	73	99	122
7011HV	0.55	63	162	338	38	54	73	79	106	133
7211HG1	0.57	113	281	563	42	60	80	89	118	146
71912CV	1.03	23	68	135	13	21	30	90	120	150
7012CV	1.05	45	122	261	18	28	41	100	135	167
7212CG1	1.15	90	225	450	20	31	43	113	149	181
71912HV	0.50	34	104	207	31	47	62	80	107	133
7012HV	0.51	72	180	383	42	60	82	88	118	148
7212HG1	0.56	135	338	675	47	66	88	98	130	160
71913CV	0.97	34	90	194	17	27	41	97	131	163
7013CV	1.01	50	126	275	19	29	43	106	141	176
7213CG1	1.09	95	236	473	21	33	46	120	158	193
71913HV	0.48	54	135	284	41	59	80	86	115	144
7013HV	0.50	77	194	394	44	63	85	93	124	154
7213HG1	0.52	140	349	698	49	70	93	104	138	170
71914CV	0.98	45	117	252	19	29	44	106	140	176
7014CV	0.99	63	162	349	21	32	48	117	156	194
7214CG1	1.11	104	259	518	22	33	47	122	161	197
71914HV	0.48	70	180	369	44	64	86	93	125	156
7014HV	0.49	95	248	506	48	70	94	102	138	171
7214HG1	0.53	162	405	810	51	72	96	107	143	176
71915CV 7015CV 7215CG1 71915HV 7015HV 7215HG1	0.93 0.96 1.07 0.46 0.47 0.51	50 68 108 77 104 167	131 171 270 194 261 416	275 371 540 405 540 833	21 22 23 48 52 54	32 34 35 69 74 76	47 51 49 94 99	115 124 130 101 108 114	154 164 171 135 145 151	191 205 209 169 180 187

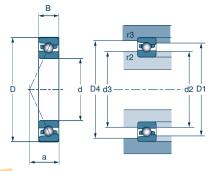
MachLine®: ranges **High Precision - Standard**

Preload, axial and radial rigidity of DU DB DF arrangements

Symbol	Deflection constant		Preload (lb	f)	,	Axial rigidit (lbf/µm)	у	F	Radial rigidi (lbf/µm)	ity
	K (1)	7	8	9	7	8	9		8	9
71916CV	0.91	50	135	288	21	34	50	118	160	199
7016CV	0.97	86	225	484	24	37	55	134	180	224
7216CG1	1.03	131	326	653	25	38	54	142	188	230
71916HV	0.45	81	203	416	50	72	97	106	141	176
7016HV	0.47	135	338	709	56	80	109	119	158	198
7216HG1	0.50	198	495	990	59	83	110	124	165	204
71917CV	0.88	63	162	349	24	37	54	132	175	218
7017CV	0.93	90	239	506	25	39	58	141	189	235
7217CG1	1.01	149	371	743	27	41	58	153	201	246
71917HV	0.43	95	243	506	54	79	106	115	154	193
7017HV	0.46	140	360	743	59	85	114	124	167	208
7217HG1	0.49	225	563	1,125	63	89	118	133	177	218
71918CV	0.84	68	171	371	25	39	58	141	187	234
7018CV	0.93	108	284	608	27	42	62	151	202	251
7218CG1	1.00	171	428	855	29	44	62	164	216	265
71918HV	0.41	104	261	540	59	84	114	124	166	206
7018HV	0.45	167	428	889	63	90	122	132	177	221
7218HG1	0.47	261	653	1,305	68	96	127	143	191	235
71919CV	0.84	72	194	416	26	41	61	145	196	244
7019CV	0.90	113	297	630	28	44	64	158	212	263
71919HV	0.41	117	293	608	62	88	119	130	173	216
7019HV	0.44	176	450	934	66	95	128	139	187	233
71920CV	0.82	86	225	484	28	44	65	157	211	263
7020CV	0.87	117	315	664	29	46	68	165	222	276
7220CG1	0.99	207	518	1,035	31	47	66	174	230	282
71920HV	0.40	135	338	709	66	94	128	139	186	232
7020HV	0.43	185	473	979	69	99	134	146	196	244
7220HG1	0.48	315	788	1,575	72	102	135	152	203	250
71921CV	0.80	90	234	495	29	46	67	164	219	271
7021CV	0.86	131	349	743	31	49	72	174	234	291
71921HV	0.39	140	360	731	68	99	133	144	194	241
7021HV	0.42	207	529	1,091	73	105	142	154	207	257
71922CV 7022CV 7222CG1 71922HV 7022HV 7222HG1	0.78 0.86 0.96 0.38 0.42 0.46	95 153 243 144 239 374	243 405 608 371 608 934	720 855 1,215 765 1,260 1,868	31 33 34 71 77 79	47 51 51 102 110	70 75 71 138 149 148	170 183 192 149 161 167	227 246 253 201 216 223	281 305 310 250 270 276
71924CV 7024CV 7224CG1 71924HV 7024HV 7224HG1	0.77 0.80 0.89 0.37 0.39	126 167 257 198 261 387	329 439 641 495 675 968	698 945 1,283 1,035 1,384 1,935	34 36 37 80 84 87	53 56 56 114 121 123	78 83 78 155 163 162	191 200 214 169 177 185	255 269 283 225 238 248	317 335 347 281 296 306

⁽¹⁾ Axial deflection constant in μ m (lbf)^{2/3} 7 = light preload 8 = medium preload 9 = heavy preload

Symbol	Deflection constant		Preload (lb	f)		Axial rigidit (lbf/µm)	у	R	adial rigidi (lbf/µm)	ty
	K (1)	7	8	9	7	8	9		8	9
71926CV	0.76	149	394	844	37	57	85	205	275	342
7026CV	0.81	212	551	1,181	38	60	88	216	289	359
71926HV	0.37	234	596	1,238	86	123	167	181	243	303
7026HV	0.40	333	844	1,744	90	123	175	191	255	318
71928CV	0.72	162	428	900	40	62	90	221	296	367
7028CV	0.76	234	608	1,305	42	66	97	237	317	395
71928HV	0.35	257	653	1,339	93	133	180	196	262	326
7028HV	0.37	371	934	1,924	100	142	192	210	281	349
71930CV	0.70	198	518	1,091	44	68	100	244	326	404
7030CV	0.74	270	709	1,508	45	71	104	255	342	425
71930HV	0.34	311	788	1,631	102	147	198	216	289	360
7030HV	0.36	428	1,091	2,228	107	153	207	226	302	376
71932CV	0.68	207	540	1,148	45	71	104	253	339	420
7032CV	0.73	311	810	1,721	49	76	111	273	366	454
71932HV	0.33	324	821	1,699	106	152	206	224	299	373
7032HV	0.36	484	1,238	2,621	114	164	221	241	323	403
71934CV	0.65	221	574	1,215	48	75	110	270	361	448
7034CV	0.71	349	923	1,958	52	81	119	290	390	484
71934HV	0.32	349	878	1,823	114	162	220	239	320	399
7034HV	0.35	551	1,406	2,914	122	175	236	257	345	430
71936CV	0.65	270	709	1,496	52	81	119	289	387	480
7036CV	0.71	450	1,159	2,464	56	87	127	315	420	522
71936HV	0.32	416	1,080	2,216	121	174	235	254	343	426
7036HV	0.35	698	1,789	3,679	131	189	254	277	372	463
71938CV	0.62	288	754	1,586	55	86	126	309	413	511
7038CV	0.69	473	1,226	2,588	59	91	133	331	441	547
71938HV	0.31	450	1,148	2,374	129	186	251	272	365	455
7038HV	0.34	743	1,879	3,870	138	198	267	292	390	486
71940CV	0.65	371	979	2,048	58	90	132	323	433	536
7040CV	0.69	540	1,418	3,004	62	96	140	347	464	576
71940HV	0.32	585	1,485	3,060	136	194	265	286	383	477
7040HV	0.34	855	2,171	4,478	145	208	281	306	411	511
71944CV	0.61	383	990	2,093	63	97	143	350	466	578
7044CV	0.65	608	1,620	3,465	68	107	158	383	515	640
71944HV	0.30	596	1,519	3,116	146	210	283	308	414	514
7044HV	0.32	956	2,453	5,063	160	231	312	338	454	565
71948CV	0.58	405	1,058	2,250	67	104	153	372	497	617
71948HV	0.28	641	1,631	3,353	157	225	303	329	441	549



MachLine®: ranges High Speed and Sealed - ML & MLE

| Series 719 / 70

Di	mensi	ons	Weight	S	eries		e for eation	Balls	s						
d	D	В	lbs			D1	d2	d3	D4	r2	r3	D5	Е	Diam.	Nb
10	22 26	6 8	0.022 0.040	ML ML	71900 7000	17.2 19.5	13.3 14.2	13.6 14.7	17.8 20.1	0.3 0.3	0.1 0.1	14.4 15.7	1.05 1.53	2.381 3.175	14 11
12	24	6	0.024	ML	71901	19.0	15.1	15.4	19.6	0.3	0.1	16.2	1.05	2.381	14
	28	8	0.044	ML	7001	21.5	16.2	16.7	22.1	0.3	0.1	17.7	1.58	3.175	13
15	28	7	0.033	ML	71902	23.3	18.3	18.7	23.7	0.3	0.1	19.7	1.35	2.778	16
	32	9	0.062	ML	7002	25.7	19.4	20.2	26.8	0.3	0.1	21.3	1.85	3.969	13
17	30 35	7 10	0.037 0.082	ML ML	71903 7003	25.6 28.4	20.6 22.0	21.0 22.7	26.0 29.5	0.3 0.3	0.1 0.1	22.0 23.9	1.35 1.85	2.778 3.969	18 15
20	37	9	0.079	ML	71904	30.7	24.5	25.1	31.8	0.3	0.2	26.3	1.75	3.969	16
	42	12	0.139	ML	7004	34.3	25.3	26.6	35.7	0.6	0.3	27.9	2.63	5.556	14
25	42	9	0.090	ML	71905	36.2	30.0	30.6	37.3	0.3	0.2	31.8	1.75	3.969	19
30	47 47	12 9	0.168 0.104	ML ML	7005 71906	39.9 40.7	30.9 34.5	32.2 35.1	41.3 41.8	0.6	0.3	33.5 36.2	2.63 1.73	5.556 3.969	17 22
00	55	13	0.247	ML	7006	45.8	36.8	38.1	47.2	1.0	0.3	39.4	2.63	5.556	20
35	55	10	0.165	ML	71907	47.1	40.8	41.4	48.2	0.6	0.2	42.7	1.90	3.969	26
40	62 62	14 12	0.329	ML ML	7007 71908	51.5 53.1	41.5 45.3	43.2 46.8	53.6 54.4	1.0 0.6	0.3	44.6 47.6	3.10 2.25	6.350 4.762	20 25
40	68	15	0.408	ML	7008	57.5	47.5	49.2	59.6	1.0	0.2	50.5	3.00	6.350	22
45	68	12	0.282	ML	71909	58.6	50.8	52.3	59.9	0.6	0.3	53.0	2.23	4.762	28
	75	16	0.525	ML	7009	63.0	53.0	54.7	65.0	1.0	0.3	56.1	3.05	6.350	22
50	72 80	12 16	0.284 0.564	ML ML	71910 7010	63.1 68.0	55.3 58.0	56.8 59.7	64.4 70.0	0.6 1.0	0.3 0.3	57.5 61.0	2.23 3.00	4.762 6.350	30 25
55	80	13	0.390	ML	71911	73.8	60.5	62.2	76.0	1.0	0.3	64.3	2.50	5.556	30
00	90	18	0.873	ML	7011	79.5	65.5	66.5	83.5	1.1	0.6	69.5	1.70	7.938	22
60	85	13	0.419	ML	71912	78.8	65.6	67.1	81.0	1.0	0.3	69.3	2.50	5.556	32
	95	18	0.939	ML	7012	84.5	70.5	71.5	88.5	1.1	0.6	74.4	1.67	7.938	24
65	90 100	13 18	0.445 0.981	ML ML	71913 7013	83.5 89.5	70.5 74.0	72.5 76.5	86.5 93.5	1.0 1.1	0.3 0.6	75.0 79.4	1.25 1.67	6.350 7.938	29 26
70	100	16	0.728	ML	71914	92.0	76.5	79.0	95.5	1.0	0.3	81.9	1.63	7.938	26
	110	20	1.378	ML	7014	98.0	81.5	83.0	102.5	1.1	0.6	86.4	2.07	9.525	24
75	105 115	16 20	0.770 1.451	ML ML	71915 7015	97.0 103.0	81.5 86.5	84.0 88.0	100.5	1.0 1.1	0.3 0.6	86.9 91.4	1.63 2.07	7.938 9.525	28 25
80	110	16	0.816	ML	7015	103.0	86.5	89.0	107.5 105.5	1.0	0.8	91.4	1.63	7.938	30
00	125	22	1.927	ML	7016	111.5	93.0	94.5	116.5	1.1	0.6	98.4	2.49	11.113	23
85	120 130	18 22	1.180 2.044	ML ML	71917 7017	110.0 116.5	93.0 98.5	96.0 99.5	114.0 121.5	1.1 1.1	0.6 0.6	99.2 103.4	1.94 2.49	8.731 11.113	29 25
90	125	18	1.239	ML	71918	115.0	98.5	101.0	119.0	1.1	0.6	103.4	1.94	8.731	31
00	140	24	2.628	ML	7018	124.5	103.0	106.5	130.0	1.5	0.6	110.5	2.64	11.906	25
95	130	18	1.303	ML	71919	120.0	103.5	106.0	124.0	1.1	0.6	109.2	1.94	8.731	32
	145	24	2.785	ML	7019	129.5	109.5	111.5	135.0	1.5	0.6	115.5	2.64	11.906	26
100	140 150	20 24	1.755 2.895	ML ML	71920 7020	128.5 134.5	109.5 114.5	112.5 116.5	133.0 140.0	1.1 1.5	0.6 0.6	115.9 120.5	2.02 2.61	10.319 11.906	29 27
105	160	26	3.532	ML	7020	143.0	119.0	123.0	149.0	2.0	1.0	127.5	3.02	13.494	25
110	150	20	1.914	ML	71922	138.5	119.5	122.5	143.0	1.1	0.6	125.9	1.98	10.319	32
	170	28	4.452	ML	7022	150.5	126.0	130.0	149.0	2.0	1.0	134.7	3.23	14.288	25
120	165 180	22 28	2.655 4.778	ML ML	71924 7024	151.5 160.5	131.0 136.0	134.5 140.0	156.5 167.5	1.1 2.0	6.0 1.0	138.1 144.7	2.18 3.23	11.113 14.288	33 27
130	180	24	3.466	ML	71926	165.0	142.0	146.0	170.5	1.5	0.6	150.0	2.56	12.700	31
	200	33	7.290	ML	7026	177.0	148.5	154.0	185.0	2.0	1.0	158.9	3.84	16.669	26

Series 719 CV 70 CV

Series 719 HV 70 HV

				Basic loa in			speed rpm						Basic loa			speed pm
	Series C		a ım)	C Dynamic	Co Static	Grease	Oil			Series H		a im)	C Dynamic	Co Static	Grease	Oil
ML ML	71900 7000	C C	5 6	322 459	680 681	101,500 94,000	135,000 125,000		ML ML	71900 7000	H H	7 8	306 439	680 681	94,000 82,500	125,000 110,000
ML ML	71901 7001	C	5 7	335 513	683 684	90,000 82,500	120,000 110,000		ML ML	71901 7001	H H	7	317 491	683 684	82,500 75,000	110,000 100,000
ML	71902	С	6	457	686	75,000	100,000		ML	71902	Н	9	434	686	67,500	90,000
ML	7002	С	8	776	687	69,000	92,000		ML	7002	н	10	743	687	62,500	83,000
ML	71903	С	7	488	689	67,500	90,000		ML	71903	н	9	464	689	61,500	82,000
ML	7003	С	8	844	690	61,500	82,000		ML	7003	Н	11	810	690	55,500	74,000
ML ML	71904 7004	C	8 10	878 1,474	692 693	56,500 52,500	75,000 70,000		ML ML	71904 7004	H	11 13	833 1,418	692 693	51,000 47,500	68,000 63,000
ML	71905	С	9	968	695	47,500	63,000		ML	71905	Н	12	923	695	43,000	57,000
ML	7005	С	11	1,676	696	44,500	59,000		ML	7005	н	14	1,598	696	40,000	53,000
ML	71906	С	10	1,046	698	41,500	55,000		ML	71906	Н	13	990	698	37,500	50,000
ML	7006	С	12	1,868	699	37,500	50,000		ML	7006	Н	16	1,755	699	34,500	46,000
ML ML	71907 7007	C	11 13	1,148 2,363	701 702	35,500 33,000	47,000 44,000		ML ML	71907 7007	Н	15 18	1,080 2,250	701 702	32,500 30,000	43,000 40,000
ML	71908	С	13	1,564	704	31,500	42,000		ML	71908	Н	18	1,474	704	28,500	38,000
ML	7008	С	15	2,475	705	29,500	39,000		ML	7008	Н	20	2,363	705	27,000	36,000
ML	71909	С	14	1,654	707	28,500	38,000		ML	71909	Н	19	1,564	707	25,500	34,000
ML	7009	С	16	2,453	708	27,000	36,000		ML	7009	Н	22	2,318	708	24,000	32,000
ML ML	71910 7010	C	14 17	1,710 2,633	710 711	26,500 25,000	35,000 33,000		ML ML	71910 7010	H	20 23	1,609 2,498	710 711	24,000 22,500	32,000 30,000
ML	71911	С	16	2,273	713	21,000	31,000		ML	71911	Н	22	2,160	713	18,000	28,500
ML	7011	С	19	5,243	714	22,000	30,500		ML	7011	Н	26	4,950	714	19,000	27,000
ML	71912	С	16	2,340	716	18,000	29,500		ML	71912	Н	24	2,205	716	17,500	26,500
ML	7012	С	19	5,490	717	19,000	28,500		ML	7012	Н	27	5,175	717	17,000	25,500
ML ML	71913 7013	C	17 20	3,960 5,738	719 720	19,000 18,000	30,500 27,000		ML ML	71913 7013	Н	25 28	3,735 5,378	719 720	17,500 16,000	26,000 24,500
ML	71914	С	19	5,625	722	17,000	27,000		ML	71914	н	28	5,333	722	15,000	23,500
ML	7014	С	22	7,650	723	16,500	25,000		ML	7014	Н	31	7,200	723	15,000	21,800
ML	71915	С	20	5,850	725	16,500	26,000		ML	71915	Н	29	5,535	725	14,000	21,700
ML	7015	С	23	7,763	726	15,500	23,750		ML	7015	Н	32	7,313	726	13,500	21,000
ML ML	71916 7016	C	21 25	6,075 9,900	728 729	15,500 14,000	24,500 21,500		ML ML	71916 7016	H	30 35	5,738 9,338	728 729	13,700 12,500	21,000 19,000
ML	71917	С	23	7,088	731	14,500	22,500		ML	71917	н	33	6,638	731	12,500	20,000
ML	7017	С	26	10,350	732	13,500	20,500		ML	7017	н	36	9,788	732	11,500	18,500
ML	71918	С	23	7,313	734	13,500	21,000		ML	71918	Н	34	6,863	734	11,700	18,700
ML	7018	С	28	11,700	735	12,500	19,100		ML	7018	Н	39	11,025	735	10,500	17,200
ML ML	71919 7019	C	24 28	7,425 11,925	737 738	12,700 12,000	20,000 18,400		ML ML	71919 7019	H	35 40	6,975 11,250	737 738	11,000 10,000	17,700 16,500
ML	71920	С	26	9,563	740	11,700	18,500		ML	71920	Н	38	9,000	740	10,500	16,700
ML	7020	С	29	12,150	741	11,500	18,000		ML	7020	Н	41	11,475	741	9,500	15,900
ML	7021	С	31	14,625	743	10,500	16,500		ML	7021	Н	44	13,725	743	9,000	14,900
	71922	С	28	10,013	745	10,500	17,000		ML	71922	Н	41	9,450	745	9,300	14,700
ML	7022 71924	С	33	16,200 11,700	746 748	10,000 9,500	15,800 15,500		ML	7022 71924	Н	44	15,300 11,025	746 748	8,500 8,600	13,900 13,500
ML	7024	C	34	16,875	748	9,000	14,000		ML	7024	Н	49	15,750	748 749	8,000	12,500
ML	71926	С	33	14,400	751	8,500	14,000		ML	71926	Н	48	13,500	751	7,500	11,500
ML	7026	С	39	21,825	752	8,000	12,500	_	ML	7026	Н	55	20,700	752	7,000	10,500

| Preload, axial and radial rigidity of DU DB DF arrangements

Symbol		Deflection constant		Preload (lbf)		,	Axial rigidity (lbf/µm)	у	F	Radial rigidit (lbf/µm)	ty
		K (1)	7	8	9	7	8	9	7	8	9
ML 71900 ML 7000 ML 71900 ML 7000	C H	2.58 2.33 1.25 1.14	2 2 2 4	5 7 8 11	10 14 16 23	3 3 6 6	4 4 8 9	6 6 11 11	13 14 12 13	19 20 8 18	24 24 22 23
ML 71901 ML 7001 ML 71901	C C H	2.31 2.19 1.12	2 2 3	5 8 8	10 16 16	3 3 6	4 5 9	6 7 11	14 16 13	20 23 19	25 29 23
ML 7001 ML 71902 ML 7002 ML 71902 ML 7002	С Н Н	1.06 2.18 2.06 1.05 1.00	4 2 4 4 7	12 7 11 11 18	25 14 23 23 36	7 3 4 7 9	10 5 6 11 12	13 7 8 14 16	15 17 20 16 19	21 24 28 23 26	27 30 35 29 33
ML 71903 ML 7003 ML 71903 ML 7003 ML 71904	C H H	2.08 1.87 1.00 0.91 1.79	2 4 4 7 5	8 12 11 20	15 25 23 41 27	4 5 8 9	6 7 14 14 7	8 9 15 18	19 23 18 21	27 32 25 30 34	33 40 31 38 43
ML 7004 ML 71904 ML 7004 ML 71905	С Н Н	1.65 0.87 0.81	8 7 11	23 20 36	45 41 72 29	6 10 12	9 15 18	12 19 24	30 22 27 28	42 32 39 40	52 39 49
ML 7005 ML 71905 ML 7005 ML 71906	C H H	1.50 0.80 0.74 1.59	8 8 14 5	25 23 41 16	50 45 81 32	7 12 15	11 17 22 10	14 22 28 13	34 26 32 31	49 37 46 45	61 46 58
ML 7006 ML 71906 ML 7006 ML 71907	С Н Н	1.43 0.77 0.70	9 8 15	27 25 45	56 50 88 34	8 13 17	12 20 25	16 25 32	40 29 37	56 42 54	71 52 66 64
ML 7007 ML 71907 ML 7007	C H H	1.30 0.70 0.63	11 9 18	36 27 56	72 54 113	9 15 19	14 22 28	18 29 36	45 34 42	65 48 60	81 60 75
ML 71908 ML 7008 ML 71908 ML 7008	С Н Н	1.29 1.25 0.63 0.61	8 12 12 20	23 36 36 59	47 74 74 117	8 10 17 21	12 15 25 30	17 20 33 39	42 49 39 46	59 69 55 65	74 87 69 81
ML 71909 ML 7009 ML 71909 ML 7009	C H H	1.20 1.22 0.59 0.60	8 12 14 20	25 36 38 59	50 74 79 117	9 10 19 21	14 15 28 30	18 20 36 39	45 49 43 46	65 69 60 65	81 87 76 81
ML 71910 ML 7010 ML 71910 ML 7010	С Н Н	1.13 1.14 0.55 0.56	9 14 14 20	25 41 41 63	52 79 81 126	10 11 20 23	14 17 30 34	19 22 38 44	49 55 45 50	68 79 65 73	86 97 80 91
ML 71911 ML 7011 ML 71911 ML 7011	C H H	1.06 1.15 0.59 0.64	11 16 18 27	34 52 54 83	68 106 108 167	11 11 23 24	17 18 35 36	22 23 45 47	57 57 51 54	80 83 74 77	100 104 93 97
ML 71912 ML 7012 ML 71912 ML 7012	C H	1.01 1.08 0.57 0.60	11 18 18 29	36 57 54 89	70 114 110 180	12 12 25 26	18 19 36 39	23 25 47 51	61 62 54 59	86 90 80 84	106 113 99 105

Symbol	Deflection constant		Preload (lbf)		Axial rigidity (lbf/μm)			Radial rigidi (lbf/µm)		ity	
	K (1)	7	8	9	7	8	9	7	8	9	
ML 71913 C	1.03	14	42	83	12	18	24	60	86	107	
ML 7013 C ML 71913 H	1.03 0.57	19 20	61 65	123 130	13 24	21 37	27 48	67 54	98 80	122 99	
ML 71913 H	0.57	32	97	194	28	42	55	63	91	114	
ML 71914 C	1.04	21	60	119	14	20	27	69	97	121	
ML 7014 C	1.03	26	81	162	15	23	30	75	108	135	
ML 71914 H	0.57	29	60	185	28	42	54	62	90	112	
ML 7014 H	0.57	43	129	261	32	47	61	70	101	127	
ML 71915 C ML 7015 C	0.98 0.99	22 27	63 85	127 170	15 16	22 24	29 32	74 78	104 113	129 140	
ML 71915 H	0.54	31	99	199	30	45	58	66	97	121	
ML 7015 H	0.55	45	133	270	33	49	63	74	105	132	
ML 71916 C	0.94	23	68	135	16	23	31	79	111	138	
ML 7016 C ML 71916 H	1.00 0.52	34 33	107 106	214 212	17 32	26 48	34 62	84 71	121 103	151 129	
ML 7016 H	0.52	57	169	338	36	52	68	71	113	141	
ML 71917 C	0.90	28	79	158	17	25	33	84	118	147	
ML 7017 C	0.94	37	116	232	18	28	37	91	132	164	
ML 71917 H	0.52	39	124	248	34	51	66	76	110	137	
ML 7017 H	0.52	61	182	365	38	57	74	86	123	153	
ML 71918 C ML 7018 C	0.89 0.92	29 41	84 128	168 261	18 19	27 29	35 39	90 97	126 140	157 175	
ML 71918 H	0.50	42	132	265	36	54	70	81	117	147	
ML 7018 H	0.51	71	208	423	41	61	79	92	131	165	
ML 71919 C	0.87	30	87	173	18	27	36	93	130	162	
ML 7019 C ML 71919 H	0.90 0.48	44 43	137 136	275 271	20 37	31 56	41 72	101 83	146 121	182 151	
ML 7019 H	0.50	73	216	439	43	63	82	96	136	171	
ML 71920 C	0.87	39	111	221	20	30	39	100	140	174	
ML 7020 C	0.88	45	141	284	21	32	43	105	152	189	
ML 71920 H	0.48	55	173	347	40	60	78	90	130	162	
ML 7020 H ML 7021 C	0.49	76 54	226 171	452 342	45 22	66 34	85 45	99	142 160	177 199	
ML 7021 C	0.89	90	270	540	22 47	69	90	104	149	186	
ML 71922 C	0.83	43	122	243	22	33	43	110	154	192	
ML 7022 C	0.87	60	182	371	23	35	47	116	167	209	
ML 71922 H	0.46	61	190	381	44	66	86	99	143	179	
ML 7022 H	0.48	101	299	608	50 24	73 36	95 48	110	157	197 213	
ML 71924 C ML 7024 C	0.79 0.83	51 65	145 199	290 410	24 25	36 38	48 51	122 126	171 181	213 227	
ML 71924 H	0.44	72	225	450	49	73	95	110	158	198	
ML 7024 H	0.46	108	324	648	53	79	102	119	170	212	
ML 71926 C	0.78	63	178	356	26	39	51	131	184	228	
ML 7026 C ML 71926 H	0.81 0.43	84 90	263 279	540 558	28 53	43 79	58 102	141 118	204 171	255 213	
ML 71926 H	0.43	142	423	855	60	79 88	115	134	191	239	
	20										

(1) Axial deflection constant in μ m (lbf)-2/3 7 = light preload 8 = medium preload 9 = heavy preload

Precision self-locking nuts

It is highly recommended that precision self-locking nuts are used whenever MachLine bearings are installed. They can be used to preload a bearing assembly and ensure the preload is maintained over time. When used with large axial loads, the assembly can be reliably positioned to last.

Features

- High strength steel (1,000 N/mm²) throughout the range, protected by finish rolling (apart from back face and threads).
- Squareness $\,<$ 2 μm between back face / bore.
- Metric thread with tolerance 5H (as per ISO 965/1).
- Narrow or wide series.
- Locking via blind holes or slots.
- Nuts locked with 2 or 4 bronze inserts.

Installation precautions

As with bearings, wait until the last moment to remove nuts from packaging to avoid contamination risks. Place them on the rolled face. Once the nut has been tightened with a wrench (DIN 1810A and DIN 1810B), tighten the insert fastening screws with an Allen key (4 insert series: tighten gradually in a cross formation).

You are advised to replace nuts each time bearings are replaced.

SNR offers a full range of wrenches which are solid, secure and easy to use. The 5 dimensions of our wrenches are sufficient to replace the equivalent of 15 conventional fixed models. For more information, visit: www.snr-bearings.com or contact your SNR technician.

Series	Number of inserts	Slots	Blind holes
Narrow	2	В	TB
- Namow	4	BR	TBR
Wide	2	BP	TBP
mao	4	BPR	TBPR

| Dimensions and part numbers

Nuts type B and TB

Threads		P/N	Weight		Dime	nsions		Locking screw		Nuts	
D2		-		D1	L1	D3	М	Mbl	Far	Ma	Md
-	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M8 x 0.75	B 8/0.75	-	0.01	16	8	11	M4	1	27	4	26
M12 x 1	B 12/1	-	0.015	22	8	18	M4	1	47	8	31
M15 x 1	B 15/1	-	0.02	25	8	21	M4	1	65	10	32
M17 x 1	B 17/1	-	0.03	28	10	24	M5	3	100	15	32
M20 x 1	B 20/1	TB 20/1	0.04	32	10	28	M5	4-5	140	18	39
M20 x 1.5	B 20/1.5	TB 20/1.5	0.04	32	10	28	M5	4-5	126	18	39
M25 x 1.5	B 25	TB 25	0.06	38	12	33	M5	4-5	198	25	56
M30 x 1.5	B 30	TB 30	0.08	45	12	40	M5	4-5	240	32	63
M35 x 1.5	B 35	TB 35	0.11	52	12	47	M5	4-5	263	40	72
M40 x 1.5	B 40	TB 40	0.15	58	14	52	M6	8-10	290	55	97
M45 x 1.5	B 45	TB 45	0.18	65	14	59	M6	8-10	322	65	115
M50 x 1.5	B 50	TB 50	0.20	70	14	64	M6	8-10	351	85	132
M55 x 2	B 55	TB 55	0.25	75	16	68	M8	16-18	378	95	148
M60 x 2	B 60	TB 60	0.27	80	16	73	M8	16-18	405	100	186
M65 x 2	B 65	TB 65	0.28	85	16	78	M8	16-18	431	120	196
M70 x 2	B 70	TB 70	0.38	92	18	85	M8	16-18	468	130	228
M75 x 2	B 75	TB 75	0.42	98	18	90	M8	16-18	497	150	255
M80 x 2	B 80	TB 80	0.49	105	18	95	M8	16-18	527	160	291
M85 x 2	B 85	TB 85	0.52	110	18	100	M8	16-18	558	190	315
M90 x 2	B 90	TB 90	0.75	120	20	110	M8	16-18	603	200	369
M95 x 2	B 95	TB 95	0.78	125	20	115	M8	16-18	637	220	391
M100 x 2	B 100	TB 100	0.82	130	20	120	M8	16-18	688	250	432

Nuts type BP and TBP

Threads	ı	P/N	Weight		Dime	nsions		Locking screw		Nuts	
D2	-	-	_	D1	L1	D3	М	Mbl	Far	Ма	Md
		-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M20 x 1	BP 20/1	TBP 20/1	0.12	38	20	28	M5	4-5	255	18	39
M20 x 1.5	BP 20/1.5	TBP 20/1.5	0.12	38	20	28	M5	4-5	225	18	39
M25 x 1.5	BP 25	TBP 25	0.17	45	20	33	M6	8-10	405	25	56
M30 x 1.5	BP 30	TBP 30	0.24	52	22	40	M6	8-10	491	32	63
M35 x 1.5	BP 35	TBP 35	0.28	58	22	47	M6	8-10	560	40	72
M40 x 1.5	BP 40	TBP 40	0.29	62	22	52	M8	16-18	585	55	97
M45 x 1.5	BP 45	TBP 45	0.37	68	24	59	M8	16-18	641	65	115
M50 x 1.5	BP 50	TBP 50	0.46	75	25	64	M8	16-18	706	85	132
M55 x 2	BP 55	TBP 55	0.92	88	32	68	M8	16-18	940	95	148
M60 x 2	BP 60	TBP 60	1.14	98	32	73	M8	16-18	1,070	100	186
M65 x 2	BP 65	TBP 65	1.29	105	32	78	M8	16-18	1,155	120	196
M70 x 2	BP 70	TBP 70	1.49	110	35	85	M8	16-18	1,230	130	228
M75 x 2	BP 75	TBP 75	2.25	125	38	90	M10	30-32	1,300	150	255
M80 x 2	BP 80	TBP 80	2.97	140	38	95	M10	30-32	1,420	160	291
M85 x 2	BP 85	TBP 85	3.44	150	38	100	M10	30-32	1,510	190	315
M90 x 2	BP 90	TBP 90	3.59	155	38	110	M10	30-32	1,596	200	369
M95 x 2	BP 95	TBP 95	3.73	160	38	115	M10	30-32	1,656	220	391
M100 x 2	BP 100	TBP 100	3.70	160	40	120	M10	30-32	1,780	250	432

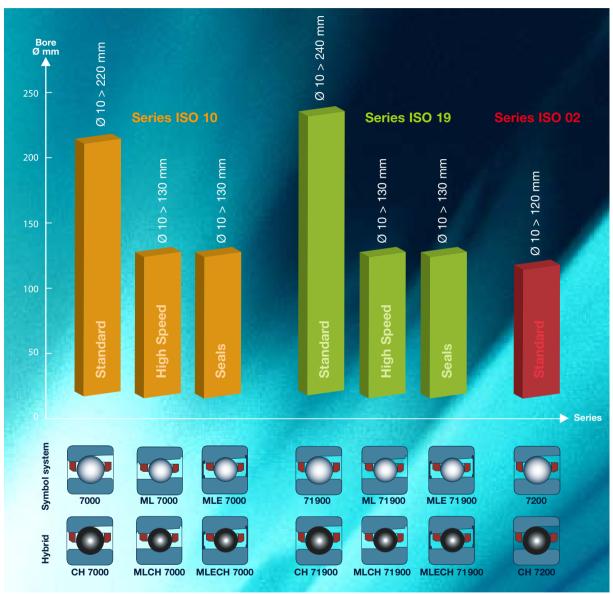
Far: Axial breaking load (corresponds to thread failure). In operation, a nut should support less than 75 % of axial breaking load Far specified for this nut / Ma: Nut installation torque / Md: Nut untightening torque (installed with corresponding torques Ma and MbI) / MbI: Insert tightening torque / D1: Outside diameter / D3: Back face diameter / L1: Width

| Dimensions and part numbers

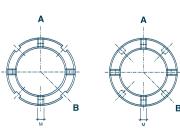
Nuts type BR and TBR

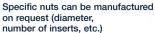
Threads	ı	P/N	Weight		Dime	nsions		Locking screw		Nuts	
D2	-	-		D1	L1	D3	М	Mbl	Far	Ma	Md
-	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M25 x 1.5	BR 25	TBR 25	0.06	38	12	33	M5	3-4	198	25	85
M30 x 1.5	BR 30	TBR 30	0.08	45	12	40	M5	3-4	240	32	96
M35 x 1.5	BR 35	TBR 35	0.11	52	12	47	M5	3-4	263	40	107
M40 x 1.5	BR 40	TBR 40	0.15	58	14	52	M6	6-8	290	55	127
M45 x 1.5	BR 45	TBR 45	0.18	65	14	59	M6	6-8	322	65	149
M50 x 1.5	BR 50	TBR 50	0.20	70	14	64	M6	6-8	351	85	180
M55 x 2	BR 55	TBR 55	0.25	75	16	68	M8	12-14	378	95	206
M60 x 2	BR 60	TBR 60	0.27	80	16	73	M8	12-14	405	100	255
M65 x 2	BR 65	TBR 65	0.28	85	16	78	M8	12-14	431	120	277
M70 x 2	BR 70	TBR 70	0.38	92	18	85	M8	12-14	468	130	304
M75 x 2	BR 75	TBR 75	0.42	98	18	90	M8	12-14	497	150	357
M80 x 2	BR 80	TBR 80	0.49	105	18	95	M8	12-14	527	160	396
M85 x 2	BR 85	TBR 85	0.52	110	18	100	M8	12-14	558	190	444
M90 x 2	BR 90	TBR 90	0.75	120	20	110	M8	12-14	603	200	501
M95 x 2	BR 95	TBR 95	0.78	125	20	115	M8	12-14	637	220	550
M100 x 2	BR 100	TBR 100	0.82	130	20	120	M8	12-14	688	250	603

Nuts type BPR and TBPR


Threads	ı	P/N	Weight		Dime	nsions		Locking screw		Nuts	
D2	-	-	-	D1	L1	D3	М	Mbl	Far	Ма	Md
-	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M20 x 1	BPR 20/1	TBPR 20/1	0.12	38	20	28	M5	3-4	255	18	56
M20 x 1.5	BPR 20/1.5	TBPR 20/1.5	0.12	38	20	28	M5	3-4	225	18	56
M25 x 1.5	BPR 25	TBPR 25	0.17	45	20	33	M6	6-8	405	25	85
M30 x 1.5	BPR 30	TBPR 30	0.24	52	22	40	M6	6-8	491	32	96
M35 x 1.5	BPR 35	TBPR 35	0.28	58	22	47	M6	6-8	560	40	107
M40 x 1.5	BPR 40	TBPR 40	0.29	62	22	52	M8	12-14	585	55	127
M45 x 1.5	BPR 45	TBPR 45	0.37	68	24	59	M8	12-14	641	65	149
M50 x 1.5	BPR 50	TBPR 50	0.46	75	25	64	M8	12-14	706	85	180
M55 x 2	BPR 55	TBPR 55	0.92	88	32	68	M8	12-14	940	95	206
M60 x 2	BPR 60	TBPR 60	1.14	98	32	73	M8	12-14	1,070	100	255
M65 x 2	BPR 65	TBPR 65	1.29	105	32	78	M8	12-14	1,155	120	277
M70 x 2	BPR 70	TBPR 70	1.49	110	35	85	M8	12-14	1,230	130	304
M75 x 2	BPR 75	TBPR 75	2.25	125	38	90	M10	24-26	1,300	150	357
M80 x 2	BPR 80	TBPR 80	2.97	140	38	95	M10	24-26	1,420	160	396
M85 x 2	BPR 85	TBPR 85	3.44	150	38	100	M10	24-26	1,510	190	444
M90 x 2	BPR 90	TBPR 90	3.59	155	38	110	M10	24-26	1,596	200	501
M95 x 2	BPR 95	TBPR 95	3.73	160	38	115	M10	24-26	1,656	220	550
M100 x 2	BPR 100	TBPR 100	3.70	160	40	120	M10	24-26	1,780	250	603

Far: Axial breaking load (corresponds to thread failure). In operation, a nut should support less than 75 % of axial breaking load Far specified for this nut / Ma: Nut installation torque / Md: Nut untightening torque (installed with corresponding torques Ma and Mbl) / Mbl: Insert tightening torque / D1: Outside diameter / D3: Back face diameter / L1: Width


Summary of ranges: find the appropriate SNR solution


| MachLine range

| Range of precision nuts

Series	Number of inserts	Slots	Blind holes	Application	Bore
	2	В	-	Normal use	8 to 100
Narrow	2	-	TB	Normai use	20 to 100
INATIOW	4	BR	TBR	Medium load: maximum flatness required	25 to 100
Wide	2	BP	TBP	High loads	20 to 100
Wide	4	BPR	TBPR	Very high loads: maximum flatness required	20 to 100

Tolerances and precision classes

| Ring tolerance

Spindle precision in rotation has a direct influence on machining precision. SNR manufactures bea-

rings in very high precision class P4S and super precision class ISO 2.

Inner ring Tolerances in	μm										
		Exclusive	6	10	18	30	50	80	120	150	180
Bore (d) in mm		Inclusive	10	18	30	50	80	120	150	180	250
Tolerances	Symbol (1)										
Tolerance	Admir	ISO 4	0 -4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -10	0 -10	0 -12
on mean diameter	Δ dmp	ISO 2	0 -2.5	0 -2.5	0 -2.5	0 -2.5	0 -4	0 -5	0 -7	0 -7	0 -8
Roundness	Series 719 max. Vdp	ISO 4 ISO 2	4 2.5	4 2.5	5 2.5	6 2.5	7 4	8 5	10 7	10 7	12 8
noununess	Series 70-72	ISO 4 ISO 2	3 2.5	3 2.5	4 2.5	5 2.5	5 4	6 5	8 7	8 7	9 8
Taper	max. Vdmp	ISO 4 ISO 2	2 1.5	2 1.5	2.5 1.5	3 1.5	3.5 2	4 2.5	5 3.5	5 3.5	6 4
Radial run-out	max. K _{ia}	ISO 4 ISO 2	2.5 1.5	2.5 1.5	3 2.5	4 2.5	4 2.5	5 2.5	6 2.5	6 5	8 5
Face run-out with respect to bore	max. S _d	ISO 4 ISO 2	3 1.5	3 1.5	4 1.5	4 1.5	5 1.5	5 2.5	6 2.5	6 4	7 5
Raceway run-out with respect to face	max. S _{ia}	ISO 4 ISO 2	3 1.5	3 1.5	4 2.5	4 2.5	5 2.5	5 2.5	7 2.5	7 5	8 5
Tolerance on bearing width	Δ Bs	ISO 4 ISO 2	0 -40	0 -80	0 -120	0 -120	0 -150	0 -200	0 -250	0 -250	0 -300
Alignment of faces	max. VBs	ISO 4 ISO 2	2.5 1.5	2.5 1.5	2.5 1.5	3 1.5	4 1.5	4 2.5	5 2.5	5 4	6 5

⁽¹⁾ Symbols for tolerances comply with standard ISO 492

Equivalence of precision standards

Quality	ISO	ABEC	DIN
High precision	4	7	P4
Very high precision P4S (SNR Standard)	2: dynamic 4: dimensional	9: dynamic 7: dimensional	P2: dynamic P4: dimensional
Super precision	2	9	P2

Outer ring Tolerances in	um											
		Exclusiv	/e 2.5	18	30	50	80	120	150	180	250	31
Outside diameter (D)	in mm	Inclusiv	e 18	30	50	80	120	150	180	250	315	400
Tolerances	Symbol (1)											
Tolerance on mean	Δ Dmp	ISO 4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -9	0 -10	0 -11	0 -13	0 -15
diameter	A Dilip	ISO 2	0 -2.5	0 -4	0 -4	0 -4	0 -5	0 -5	0 -7	0 -8	0 -8	0 -10
Roundness	Series 719 max. VDp	ISO 4 ISO 2	4 2.5	5 4	6 4	7 4	8 5	9 5	10 7	11 8	13 8	15 10
Rounaness	Series 70-72	ISO 4 ISO 2	3 2.5	4 4	5 4	5 4	6 5	7 5	8 7	8 8	10 8	11 10
Taper	max. VDmp	ISO 4 ISO 2	2 1.5	2.5 2	3 2	3.5 2	4 2.5	5 2.5	5 3.5	6 4	7 4	8 5
Radial run-out	max. K _{ea}	ISO 4 ISO 2	3 1.5	4 2.5	5 2.5	5 4	6 5	7 5	8 5	10 7	11 7	13 8
Face run-out with respect to bore	max. S _D	ISO 4 ISO 2	4 1.5	4 1.5	4 1.5	4 1.5	5 2.5	5 2.5	5 2.5	7 4	8 5	10 7
Raceway run-out with respect to face	max. S _{ea}	ISO 4 ISO 2	5 1.5	5 2.5	5 2.5	5 4	6 5	7 5	8 5	10 7	10 7	13 8
Tolerance on bearing width	Δ Cs	ISO 4 ISO 2		lde	ntical val	ues to th	ose of the	bearing in	nner ring			
Alignment of faces	max. VCs	ISO 4 ISO 2	2.5 1.5	2.5 1.5	2.5 1.5	3 1.5	4 2.5	5 2.5	5 2.5	7 4	7 5	8 7

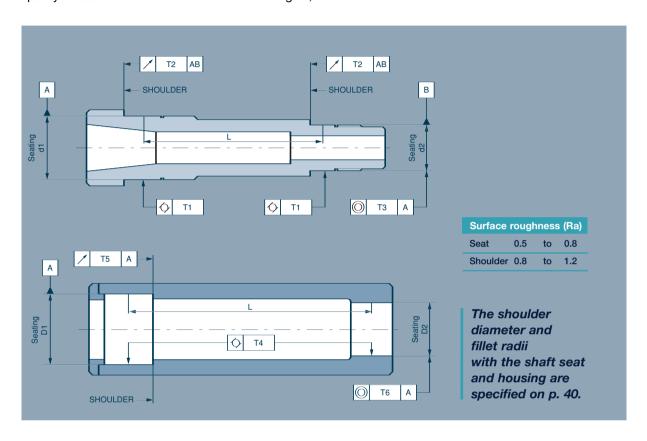
⁽¹⁾ Symbols for tolerances comply with standard ISO 492

Tolerances and precision classes

| Bearing seat tolerances

In order not to alter preloading or damage rotational accuracy, seats must be very close to bearing dimensions. In general, we recommend the fits specified below. When installing the bearings, we advise matching them with their seats to avoid assembling parts at the extremes of their tolerance limits, which can only lead to excessive clearance or tight fit.

Tolerances in microns


		Shaft				Hou	sing		
Nominal	ISO4		ISO2		ISC)4		IS	02
diameter (mm)				Fix asser			ating embly	Fixed assembly	Floating assembly
	h4 (1)	js4(2)		JS5(1)	K5(2)	H5(3)	Play (4)	JS4	-
10 to 18	0 -5	+3 -3	0 -4	- -	- -	-	- -	- -	- -
> 18 to 30	0 -6	+3 -3	0 -4	+4 -4	+1 -8	+9 0	2 to 10	+3 -3	+8 +2
> 30 to 50	0 -7	+4 -4	0 -5	+5 -5	+2 -9	+11 0	3 to 11	+4 -4	+10 +2
> 50 to 80	0 -8	+4 -4	0 -5	+6 -6	+3 -10	+13 0	3 to 12	+4 -4	+11 +3
> 80 to 120	0 -10	+5 -5	0 -6	+7 -7	+2 -13	+15 0	5 to 15	+5 -5	+13 +3
> 120 to 180	0 -12	+6 -6	0 -8	+9 -9	+3 -15	+18 0	5 to 17	+6 -6	+16 +4
> 180 to 250	0 -14	+7 -7	0 -10	+10 -10	+2 -18	+20 0	7 to 22	+7 -7	+18 +4
> 250 to 315	- -	- -	-	+11 -11	+3 -20	+23 0	7 to 27	+8 -8	+21 +5
> 315 to 400	-	-	-	+12 -12	+3 -22	+25 0	7 to 30	+9 -9	+23 +5

 ⁽¹⁾ Light load C/P > 16, Medium load 10 ≤ C/P ≤16
 (2) Heavy load C/P < 10 or high speed applications (ML range)
 (3) We recommend a tolerance, but the optimum fitting is obtained by matching the housing and bearings within the tolerance limits specified in column (4)

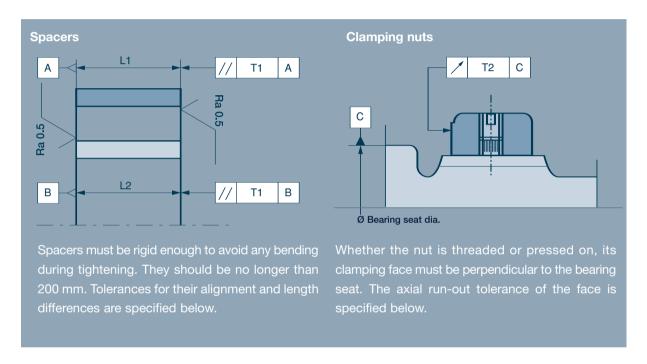
| Shape and position tolerances for shoulders and seats

Spindle performance (rotational accuracy, heat level) depends to a large extent on the manufacturing quality of seats and their shoulders. To meet targets,

these characteristics must be within the tolerances recommended by SNR.

Maximum tolerances in microns

Nominal diameter of seat (mm)	Shaft						Housing					
	T1		T2		Т3		T4		Т5		Т6	
	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2
10 to 18	1.5	1	2	1.2	0.013L ⁽¹⁾	0.008L ⁽¹⁾	-	-	-	-	-	-
> 18 to 30	2	1	2.5	1.5	0.013L ⁽¹⁾	0.008L ⁽¹⁾	2	1.5	2.5	1.5	0.015L ⁽¹⁾	0.010L ⁽¹⁾
> 30 to 50	2	1.5	2.5	1.5	0.013L ⁽¹⁾	0.008L ⁽¹⁾	2.5	1.5	2.5	1.5	0.015L ⁽¹⁾	0.010L ⁽¹⁾
> 50 to 80	2.5	1.5	3	2	0.013L ⁽¹⁾	0.008L ⁽¹⁾	3	2	3	2	0.015L ⁽¹⁾	0.010L ⁽¹⁾
> 80 to 120	3	2	4	2.5	0.025L ⁽¹⁾	0.013L ⁽¹⁾	3.5	2.5	4	2.5	0.030L ⁽¹⁾	0.015L ⁽¹⁾
> 120 to 180	3.5	2	5	3.5	0.025L ⁽¹⁾	0.013L ⁽¹⁾	4.5	3	5	3.5	0.030L ⁽¹⁾	0.015L ⁽¹⁾
> 180 to 250	4	2.5	7	4.5	0.025L ⁽¹⁾	0.013L ⁽¹⁾	5	3.5	7	4.5	0.030L ⁽¹⁾	0.015L ⁽¹⁾
> 250 to 315	-	-	-	-	-	-	6	4	8	6	0.030L ⁽¹⁾	0.015L ⁽¹⁾
> 315 to 400	-	-	-	-	-	-	6	4.5	9	7	0.030L ⁽¹⁾	0.015L ⁽¹⁾



Tolerances and precision classes

Component tolerances - spacers and clamping nuts

Rotational accuracy of the spindle also depends on manufacturing precision of spacers and nuts.

Maximum tolerances in microns

Nominal bore		Spa	Nut				
of spacer or nominal diameter	т	2	Difference between I	in length L1 and L2	T2		
of bearing seat (mm)	ISO4	ISO2	ISO4	ISO2	ISO4	ISO2	
10 to 18	2	1	2	1	5	3	
> 18 to 30	2	1	2	1	6	4	
> 30 to 50	2	1	2	1	7	4	
> 50 to 80	2	1	3	2	8	5	
> 80 to 120	3	2	3	2	10	6	
> 120 to 180	3	2	4	3	12	8	
> 180 to 250	4	3	5	4	14	10	

and services

Maintenance is a major issue, particularly for heavily used components such as bearings. It has an influence on productivity, occupational health and safety, and the environment. Maintenance is a risk avoidance operation based most of all on human know-how. Our teams will talk you through their expertise over the course of this chapter...

- Storage 62
- Assembly 63-66
- Vibratory analysis 67
- Expert analysis, training 68

Storage: rules to follow

Every SNR bearing undergoes a specific packaging process in order to ensure its original qualities are maintained during storage. Spindle results in the long-term will be dependent on the precautions taken on installation.

SNR packaging process and bearing protection

- Assembly is carried out in a dust-free air-conditioned environment.
- High covering power anti-oxidant protective oil is applied in a controlled atmosphere. This protection is compatible with all currently-used lubricants.
- The final protective elements are a heat-sealed protective bag and a packing box.

Normal storage conditions

- General cleanliness.
- Free of dust and corrosive atmospheric conditions.
- Recommended temperature: 64° to 68°F.
- Maximum relative humidity: 65 %. For exceptional climatic conditions, specific packaging will be necessary (e.g.: specific packaging for tropical countries).
- Do not store on wooden shelves.
- Keep at least 30 cm from ground, walls and heating pipework.
- Avoid exposure to the sun.
- Store boxes flat and do not stack to high.
- Lay out boxes so bearing part number is visible without handling.

Storage time

Thanks to their standard unit packaging, SNR bearings can have long storage times and the normal storage conditions. The packaging must not be opened, altered or damaged.

Installation: rules to follow

General installation precautions

Spindle should be assembled in clean, well-lit area away from manufacturing sites, in order to avoid risk of contamination.

Do not remove bearings from their box until they are to be installed. Do not wash bearings under any circumstances.

The bearing must be stored in its original packaging and not opened until the time of use.

| Pre-installation checks

Dimensions and tolerances of components making up the spindle must first be checked (see pages 58 to 60). All components must be carefully washed and dried before installation.

Bearing installation

Bearing seats must be coated with an anti-corrosive product. SNR recommends the use of an assembly paste.

Products used for bearing protection are compatible with all SNR-recommended lubricants.

Selection of outside diameter and bore dimensions

To obtain as uniform as possible preload and an external load distributed evenly as possible between all bearings in an arrangement, it is recommended that there should be almost identical interferences or clearances between these bearings and their supports (shaft and housing).

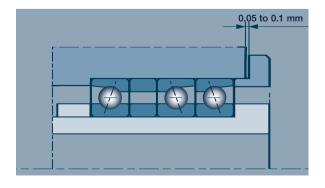
Outside diameter and bore dimensions are marked on the package and dimension selection need not involve removing bearing from box.

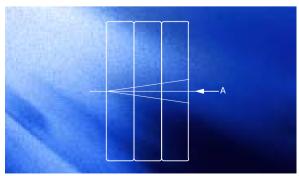
Installation: rules to follow

Lubrication

- Grease must be injected using a graduated syringe.
- SNR can supply pre-greased bearings (suffix D or sealed bearings MLE).
- For oil-based lubrication, inject some oil of the

same type as used in the system. This precaution will avoid dry start-up which could seriously damage bearings.


Define appropriate lubrication method: see page 25. For grease lubrication, follow recommended volumes (page 26).


Bearing positioning

 Universal bearings and pairs of universal bearings: Pay attention to bearing position according to contact angles to obtain the desired assembly type. For MachLine ML and MLE, use the individual « V » marked on the outer rings.

- Arrangement of matched bearings:

- An arrangement is inseparable and must not be mixed.
- Find the « V » marked on the outside diameter of bearings in order to correctly position bearings in the arrangement.
- Orientate the tip of « V » in the direction of preferential axial thrust A.

Installation

- Heat-assisted fitting (expansion) is preferable to any other method. If this is impossible, apply the pressure to the entire parameter of the ring to be fitted. Do not exert any pressure on the other ring because balls must never transmit a forcefitting load.
- Fitting by impact (e.g. with a hammer) is strictly prohibited.

| Oppose defects

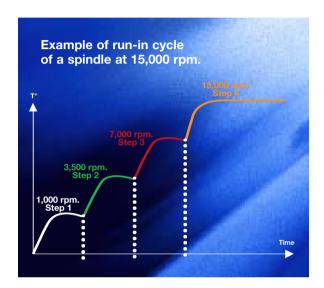
- Shaft and/or housing run-out with respect to bearing radial round out.
- Spacers.
- Line up inner ring high points.

| Tightening

- Tighten sideplate screws gradually in a cross formation to avoid misaligning the outer ring in the housing.
- Measure radial run-out of spindle nose before and after locking to check that the shaft has not been deformed by tightening. The values should be identical.

Balancing

After fitting bearings on shaft, it must be balanced to eliminate any unbalance which could affect correct spindle operation at high speed.



Installation: rules to follow

Run-in procedure

The run-in procedure has a considerable influence on the accuracy of spindle rotation and its service life. The procedure must be carried out in steps, depending on the spindle type and temperature rise. The rotation speed of the first step must be at a low enough N.Dm (of the order of 10⁵) to be certain that the lubrication film is established.

Run-in time at each step depends on the time required for bearing temperature to stabilise. As soon as the temperature is stabilised, move on to next step.

| Characteristic failures

Spalling failures due to material fatigue are extremely rare on MachLine spindle bearings.

Spindle failures are more characterized by deviation of a certain number of factors observed and measured on the manufactured components, which indicate the requirement for spindle maintenance.

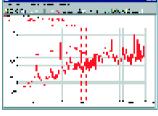
These factors are:

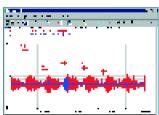
- Difficulties in maintaining dimensions.
- Increasing geometrical defects such as circularity or radial run-out.
- Poor surface finish.
- Unusual surface condition (chatter marks, vibration, etc.)
- Abnormal noises in operation.

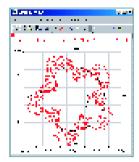
In 70 % of cases failures are linked to lubrication problems and in 10 % of cases, linked to the sealing system or a sudden impact between the part and the tool which can cause damage to spindle and bearings.

The bearing itself is rarely the cause of premature failure.

Vibratory analysis: an objective, all-round approach


The whole mechanical environment must be taken into account for maintenance, as interactions between the bearing and other components give useful indications. This all-round approach, based on experience with many different applications, is nevertheless indissociable from objective figures and data, which guarantee neutral diagnostics. This is why SNR uses specialised partners.


SNR and 01dB Metravib


Our partnership with this company provides you with specialist expert services in vibratory analysis. Fixed or portable monitoring systems can be designed and implemented to enable predictive maintenance of machine tools.

Our vibratory analysis services can help you design:

- Monitoring methods,
- Monitoring periodicity,
- The organisational structure to use,
- Results layout and technical-economical studies.

These services are fitted to each individual case. They may involve work or longer-term contracts, and we will never offer more than you need.

For more information, contact your SNR technician.

Expert analysis, training: passing on our know-how

Expert analysis: investigate the causes

Our experts are at your service for prototype installations or post-operation bearing analysis.

For an optimum analysis, it is vital to:

- remove bearings extremely carefully (it is difficult to distinguish any defects due to working conditions from those due to careless removal).
- send bearings as they are (do not wash).

- record bearing position within the spindle.
- inform our services of the spindle installation operating conditions: speed, load, lubrication and an overall drawing of the spindle.

Characteristic frequencies

In order to monitor spindles in operation, SNR can provide characteristic frequencies for spindle bearing components on request.

This information is also available in the e-catalog:

www.snr-bearings.com/catalogue

Nevertheless, due to the low deviation of recorded signals, interpreting results is delicate and must be carried out by an expert.

I Training: customized services

SNR offers a full training program, written and delivered by our engineers and machine tool spindle bearing experts.

This training course is designed for sales teams wishing to improve their product knowledge or technical design teams, manufacturing and maintenance technicians. It aims to:

- Fully introduce the MachLine range,
- Help in selecting the technical solutions appropriate for your applications.
- Introduce spindle calculations,
- Present the key installation operation phases for a spindle bearing.

SNR is open 24 hours a day, 7 days a week.

Our catalogs are available on line for checking product availability in real-time and making on-line procurement and urgent orders. It's simple and easy and available 24 hours a day, 7 days a week. Go to

www.snr-bearings.com/catalogue then click on "Catalogue Industry".

Go straight to www.snr-bearings.com and fill in the on-line form, or directly contact your usual SNR representative to take advantage of these services.

SNR: aeronautical precision made available for machine tools

SNR is a partner in major aeronautical and space programs such as the Airbus A380 or Ariane 5 and it has now transferred the experience and knowledge acquired in these fields to the area of machine tools. The MachLine range offers high precision bearings suited for extreme speed, sealing and reliability requirements.

